
Distributed	Systems	
	

Peer-to-Peer	
Rik	Sarkar	

	
University	of	Edinburgh	

Fall	2018	



Peer	to	Peer		

•  The	common	percepDon	
– A	system	for	distribuDng	(sharing?)	files	
– Using	the	computers	of	common	users	(instead	of	
servers)	

– A	popular	file	is	hosted	by	one	or	more	users’	
computers	

– Someone	who	needs	the	file	can	download	from	
one	or	more	users	

– The	P2P	system	provides	easy	methods	to	search	
for	files	and	download	them	

Distributed	Systems,	Edinburgh,	2018	 2	



Peer	to	Peer	
•  More	generally:	
–  Files	are	not	the	only	things	that	can	be	shared/
delegated	

– Users	can	share	compuDng	power	
•  CPU	cycles	
•  Storage	
•  Anonymity	(lookup	The	Onion	Router)	
•  AuthenDcaDon	(Blockchain)	

•  Peer:	One	that	is	of	equal	standing	to	others	in	
the	group	
–  Everyone	is	server	and	a	client	
–  They	provide	the	service	as	well	as	use	it	

Distributed	Systems,	Edinburgh,	2018	 3	



Client	–	Server	model	

•  The	tradiDonal	model	of	internet	service	is	
client	server	

•  For	a	service	X	(search,	email…)	
– There	is	a	specific	known	server	
– Clients	(browsers,	email	clients)	contact	the	server	
to	get	data	

Distributed	Systems,	Edinburgh,	2018	 4	



Client	–	Server	model	(drawbacks)	

•  Central	point	of	failure	
– When	the	server	fails,	enDre	service	goes	down	
–  If	the	server	does	not	recover,	all	data	may	be	lost	

•  Load	management	
– When	many	clients	send	requests,	everyone	gets	
slow	response	

– Popular	content	gets	slower	service!	
•  Addressing:	have	to	“know”	the	server	or	
search	for	it	

Distributed	Systems,	Edinburgh,	2018	 5	



P2P:	MoDvaDons	

•  Tolerance	to	faults/a`acks	
•  Load	balancing	
•  User	parDcipaDon	
•  Cost	efficiency	
•  Hard	to	control	

Distributed	Systems,	Edinburgh,	2018	 6	



Fault/a`ack	tolerant	

•  Everyone	is	a	server,	serving	part	of	the	data	
store	

•  Each	file	has	mulDple	copies	
•  Failures	of	few	or	even	many	computers	does	
not	take	down	the	enDre	service	

•  Hard	to	a`ack	everyone	at	the	same	Dme	

Distributed	Systems,	Edinburgh,	2018	 7	



Load	balanced	

•  Each	file	is	hosted	by	mulDple	users	
•  If	many	users	want	to	download,	the	job	gets	
divided	

•  Each	host	handles	only	a	small	load,	so	does	
not	get	overloaded	

•  Each	downloader	gets	faster	speed		

Distributed	Systems,	Edinburgh,	2018	 8	



ParDcipaDon		
•  Everyone	feels	involved		

•  “I	am	providing	something	useful	to	the	enDre	world!”	

•  A	unique	applicaDon	to	inspire	user-parDcipaDon	(crowdsourcing).	
Internet	2.0?	

•  Previously	(say,	in	1999),	internet	used	to	be	a	passive	experience	
for	most	people	
–  Except	the	lucky	few	who	had	access	to	servers	and	could	publish	web	

pages	

•  ParDcipaDon	is	criDcal	to	user	interest	

Distributed	Systems,	Edinburgh,	2018	 9	



Cost	efficiency	

•  A	file	or	service	can	be	provided	without	the	
expense	of	a	large	server	

•  Popular	content	is	hosted	by	many	users	
•  Popular	content	gets	be`er	and	faster	service!	
– Unlikely	to	be	lost	due	to	failure	

•  Large	delivery	bandwidth	does	not	require	
expensive	server	or	infrastructure	

Distributed	Systems,	Edinburgh,	2018	 10	



Hard	to	control	

•  And	therefore	hard	to	take	down	

•  No	one	person	has	much	authority	over	the	
system	

Distributed	Systems,	Edinburgh,	2018	 11	



Issues	in	building/using	p2p	

•  ConnecDng	--	bootstrapping	
•  Finding	content	
•  Quality	of	service	
•  Quality	of	data	
•  Hard	to	control	

Distributed	Systems,	Edinburgh,	2018	 12	



Issues	in	p2p	

•  Connec&ng	–	bootstrapping	
•  We	first	need	a	network	
•  Suppose	we	want	to	connect	to	a	p2p	system	
•  We	need	to	find	some	members	of	the	
exisDng	system	to	join	the	system	
– How	can	we	do	that?	

•  Remember,	there	is	no	“server”	with	fixed	
address	that	we	can	always	use	to	connect	

Distributed	Systems,	Edinburgh,	2018	 13	



Issues	in	p2p	

•  Finding	content	
•  Suppose	we	have	managed	to	find	the	
network	somehow	

•  We	now	want	to	find	a	parDcular	video	
•  We	don’t	know	who	has	it	
•  Hard	to	build	a	search	service,	since	peers	
regularly	join	and	leave	the	system	

Distributed	Systems,	Edinburgh,	2018	 14	



Issues	in	p2p	

•  Quality	of	service	
•  How	fast	a	download	or	service	works	may	
depend	on	who	is	hosDng	the	file/service	

•  A	file/service	may	be	unavailable	simply	
because	all	the	peers	hosDng	it	are	
unavailable	

•  Hard	to	rely	on	it..	

Distributed	Systems,	Edinburgh,	2018	 15	



Issues	in	p2p	

•  Quality	of	data	
•  You	ask	for	file	X	
•  Node	Y	claims	to	have	the	file	
•  You	download	the	file,	and	then	find	it	is	
something	completely	different	

•  We	can’t	prevent	node	Y	from	making	false	
claims		

Distributed	Systems,	Edinburgh,	2018	 16	



Issues	in	p2p	

•  Hard	to	control	
•  Therefore	hard	to	guarantee	anything	
•  The	service	may	deteriorate	in	quality	and	
hard	to	do	anything	about	it	

Distributed	Systems,	Edinburgh,	2018	 17	



Examples	

•  Arpanet-Internet	
•  SETI@Home	
•  Napster	
•  Gnutella	
•  Bi`orrent	
	

Distributed	Systems,	Edinburgh,	2018	 18	



ARPAnet	--	internet	

•  Advanced	research	project	agency	of	US	defense	
built	a	network	
–  To	facilitate	communicaDon	between	few	universiDes	
working	on	defense	and	ARPA	projects	

–  Each	university	had	a	few	computers	on	this	network	
(computers	were	very	expensive)	

–  They	can	send	messages	using	those	computers	
–  Each	computer	acted	as	server	as	well	as	client	

•  This	network	eventually	grew	to	be	the	Internet	

Distributed	Systems,	Edinburgh,	2018	 19	



ARPAnet	--	internet	

Distributed	Systems,	Edinburgh,	2018	 20	



ARPAnet	--	internet	
•  Original	design	of	the	Internet	was	with	“peers”	–	
all	computers	on	equal	fooDng	

•  The	internet	is	sDll	fundamentally	a	peer-based	
system	

•  You	can	have	a	server	on	your	computer,	and	the	
network	protocols	treat	it	the	same	way	as	any	
other	computer/server	

•  So	we	can	use	our	personal	computers	to	host	
web	pages	or	other	service	

•  (Your	ISP	may	make	it	difficult,	but	this	is	a	
money	issue,	not	a	technology	one)	

Distributed	Systems,	Edinburgh,	2018	 21	



SETI@Home	
•  Search	for	extra-terrestrial	Intelligence	
•  Radio	signal	data	from	outer	space	are	collected	

by	astronomical	telescopes/antennae	
•  To	be	analyzed	for	signs	of	“arDficial	signal”	

structures	created	by	intelligent	life	in	other	
planets	

•  The	data	is	split	into	small	chinks	for	analysis	by	
different	computers	

•  SETI@home	volunteers	have	the	sopware	
installed	on	their	computers	

•  The	sopware	contacts	the	UC	Berkeley	Server	
and	downloads	data	

•  When	the	computer	is	not	in	heavy	use,	the	
sopware	analyzes	data	and	sends	results	back	
to	server	

Distributed	Systems,	Edinburgh,	2018	 22	



SETI@Home	
•  SDll	relies	largely	on	the	
central	server	for	
coordinaDon	

•  Individual	partcipants	
only	do	the	computaDon	
they	are	asked	to	

•  No	communicaDon	to	
peers	

•  Uses	P2P	for	
computaDon	instead	of	
the	usual	file	sharing	

Distributed	Systems,	Edinburgh,	2018	 23	



Napster	

•  Music	sharing	sopware	
•  Sopware	makes	list	of	all	songs	user	wants	to	share	
•  Uploads	list	of	songs	to	napster	server(s)	
–  (large	systems	need	server	farms	–	a	distributed	system	in	
itself)	

•  When	someone	searches	for	a	song,	the	search	goes	to	
server	

•  Server	returns	list	of	peers	(IP	addresses)	that	have	the	
song,	and	it	thinks	are	online	

•  Song	download	happens	directly	from	one	of	the	peers	

Distributed	Systems,	Edinburgh,	2018	 24	



Napster	

•  Central	server	based	indexing	and	search	
– Single	point	of	failure	

•  ConnecDng	to	the	network	is	easy	–	connect	
to	server	

•  Download	is	fast	–	download	from	peer	
•  Download	from	a	single	peer	
•  No	verificaDon	of	data	correctness	

Distributed	Systems,	Edinburgh,	2018	 25	



Napster	--	History	

•  Started	in	1999	
•  Popular		--	13	million	users	in	2001	
•  Copyright	lawsuits	throughout	
•  Millions	in	fines	
•  Bankrupt	and	closed	in	2002	

•  “napster”	brand	exists	as	music	store	

Distributed	Systems,	Edinburgh,	2018	 26	



Gnutella	
•  Trying	to	address	napster’s	drawbacks	
•  Completely	distributed	

–  No	server	for	indexing	and	searching	
–  Open	protocol	–	anyone	can	build	sopware	

•  Gnutella	used	an	overlay	network	for	search	
–  Every	node	had	a	few	peers	as	“neighbors”	
–  Choice	of	neighbors	unrelated	to	underlying	network		

•  Search	queries	flooded	in	overlay	network	to	reach	all	peers	
•  Any	node	that	has	the	file	responds	to	search	

–  Response	routed	along	the	path	that	the	search	took	to	arrive	to	node	
•  The	file	is	downloaded	from	one	of	the	responders	

–  The	download	happens	directly	from	the	peer	(not	through	the	
overlay	network)	

Distributed	Systems,	Edinburgh,	2018	 27	



Gnutella	
•  Flooding	for	search	was	inefficient	

–  Cost	can	be	reduced	by	using	TTL	and	limiDng	search	radius,	but	
sDll	inefficient	

•  Need	the	IP	address	of	at	least	1	peer	to	join	network	
–  Then	can	connect	find	other	peers	through	it	
–  In	pracDce,	some	peers	were	known	to	be	always	running	
(servers)	

–  No	fully	distributed	soluDon	to	this	problem	
•  No	verificaDon	of	data/content	
•  More	distributed	operaDon	than	other	systems	
•  No	longer	acDve	
•  Replaced	by	Kaaza,	limewire	etc	

Distributed	Systems,	Edinburgh,	2018	 28	



Bi`orrent	

•  A	file/folder	shared	creates	a	“torrent”	file	
– Acts	as	a	more	detailed	descripDon	than	simply	the	
name	

–  Contains	name	
–  Contains	list	of	trackers	

•  Trackers	are	servers	that	maintain	list	of	peers	hosDng	the	
file	

–  Contains	list	of	chunks	&	checksums	
•  Chunks	are	parts	of	the	shared	file	
•  Checksums	are	hashes	to	make	sure	that	the	correct	data	
has	been	downloaded	

Distributed	Systems,	Edinburgh,	2018	 29	



Bi`orrent	

•  Torrent	files	are	found	on	web	sites	
–  Bi`orrent	does	not	a`empt	to	implement	search	

•  Bi`orrent	sopware	contacts	trackers	to	get	list	of	
peers	that	have	or	are	downloading	file	
–  Seeds	and	leeches	

•  Contacts	them	to	get	lists	of	chunks	they	have	
•  Starts	downloading	mulDple	chunks	in	parallel	
from	different	peers	

•  Randomly,	but	preferring	the	more	rare	chunks	

Distributed	Systems,	Edinburgh,	2018	 30	



Bi`orrent	

•  Rewards	peers	for	more	sharing	
– The	more	you	upload,	the	be`er	download	
speeds	you	get	

•  Prefers	faster	peers	for	download	

Distributed	Systems,	Edinburgh,	2018	 31	



Magnet	links	
•  Instead	of	a	.torrent	or	other	descriptor	file,	use	a	“link”	

which	eventually	gets	the	file	or	equivalent	data	
–  Can	be	used	in	any	system,	currently	popular	in	bi`orrent	

•  Can	be	of	different	types	
–  Some	links	direct	to	the	“trackers”,	and	give	the	hash	of	the	file	
–  Other	links	lead	into	a	DHT,	to	find	.torrent	file/info	

•  Assumes	the	user	agent	knows	how	to	enter	and	find	content	in	the	
overlay	network	of	the	DHT	

•  Several	slightly	different	formats	for	magnet	links	
•  Overall,	bi`orrent	is	moving	toward	using	DHT	magnet	

links	
•  But	the	formats/protocols	are	not	yet	standardized	or	well	

documented	

Distributed	Systems,	Edinburgh,	2018	 32	



What	is	P2P	good	for?	

•  In	principle,	can	be	used	for	all	sorts	of	sharing	
•  Problem:	peers	are	too	dynamic,	unreliable	
•  AdapDng	to	that,	makes	the	system	inefficient	
– Think	of	Gnutella	search	

•  More	recently:	Blockchain,	cryptocurrency	
– Delegate	trust/authenDcaDon	to	peers.	
–  Instead	of	central	authoriDes	like	bank/govt	

Distributed	Systems,	Edinburgh,	2018	 33	



Some	criteria	for	using	p2p	design	
•  Budget	–	p2p	is	low	budget	soluDon	to	distribute	data/computaDon	
•  Resource	relevance/popularity	–	if	the	item	is	popular,	p2p	is	useful.	

Otherwise	the	few	users	may	go	offline..	
•  Trust	–	if	other	users	can	be	trusted,	p2p	can	be	a	good	soluDon.	

–  Can	we	build	a	secure	network	that	operates	without	this	assumpDon?	
•  Rate	of	system	change	–	if	the	system	is	too	dynamic,	p2p	may	not	be	

good.	(Imagine	peers	joining/leaving	too	fast)	

•  Rate	of	content	change	–	p2p	is	good	for	staDc/fixed	content.	Not	good	for	
contents	that	change	regularly,	since	then	all	copies	have	to	be	updated.	

•  CriDcality	–	p2p	is	unreliable,	since	peers	cats	independently,	may	leave/
fail	any	Dme.	
–  P2P	is	good	for	applicaDons	that	are	good	to	have	but	are	not	criDcal	to	

anything	urgent	

Distributed	Systems,	Edinburgh,	2018	 34	



Be`er	p2p	design:	Some	theory	

•  File	transfer	in	p2p	is	scalable	(efficient	even	
in	large	systems	with	many	nodes)	
– Occurs	directly	between	peers	using	Internet	
– Bi`orrent	like	systems	can	download	from	
mulDple	peers	–	more	efficiency	

•  The	problem	in	p2p:	
– Search	is	inefficient	in	large	systems	

Distributed	Systems,	Edinburgh,	2018	 35	



Hash	tables	
•  A	hash	table	has	b	
buckets	
–  Any	item	x	is	put	into	
bucket	h(x)	

–  h(x)	must	be	at	most	b	
for	all	x	

•  Example:	a	hash	table	
of	5	buckets	
–  Any	item	x	is	put	into	
bucket	x	mod	5	

–  Insert	numbers	3,	5,	
12,	116,	211	

Distributed	Systems,	Edinburgh,	2018	 36	

0	

1	

2	

3	
4	



Hash	tables	
•  Hash	tables	are	used	to	find	elements	
quickly	

•  Suppose	we	use	hash	on	the	file	name	
“fname”		

•  Then	h(“fname”)	takes	us	to	the	bucket	
containing	file	fname	

•  If	the	bucket	has	many	files,	then	we	
will	sDll	have	to	search	for	the	file	
inside	the	bucket	

•  But	if	our	hash	table	is	reasonably	
large,	then	usually	there	will	be	only	a	
few	files	in	the	bucket	–	easy	to	search	

Distributed	Systems,	Edinburgh,	2018	 37	

0	 5	

116,	211	

2	

3	

1	

2	

3	
4	



Distributed	hash	tables	

•  Each	computer	knows	the	hash	
funcDon	

•  Each	computer	is	responsible	for	
some	of	the	hash	buckets	

•  Different	parts	of	the	data	are	
stored	in	different	computers	

Distributed	Systems,	Edinburgh,	2018	 38	

0	

1	

2	

3	

4	

5	

6	



Distributed	hash	tables	

•  Elements	can	be	inserted/
retrieved	as	usual	to	the	
corresponding	bucket	
– But	need	to	ask	the	computer	
responsible	for	that	bucket	

•  Need	efficient	mechanism	to	find	
the	responsible	node	
– Using	communicaDon	between	
nodes	

Distributed	Systems,	Edinburgh,	2018	 39	

0	

1	

2	

3	

4	

5	

6	



Distributed	hash	tables	

•  P2p	systems	are	dynamic	
– Nodes	join/leave	all	the	Dme	
– Need	a	mechanism	to	ship	
responsibiliDes	with	change	

Distributed	Systems,	Edinburgh,	2018	 40	

0	

1	

2	

3	

4	

5	

6	



Example	system:	Chord	

•  P2P	system	from	MIT	
(2001)	

•  Operates	using	a	ring	
overlay	for	the	set	of	
node	ids	

•  Each	id	has	a	slot	in	the	
overlay	
– All	slots	may	not	be	
occupied	

Distributed	Systems,	Edinburgh,	2018	 41	

0	

1	

2	

3	

4	

5	

6	

7	



Example	system:	Chord	
•  Each	node	knows	the	next	and	

previous	occupied	slots	in	the	
ring	

•  Storage	using	hash	tables	

•  To	store/retrieve	data,	forward	
message	to	next	unDl	reaching	
the	node	with	the	bucket	

•  If	the	slot	is	not	occupied,	(for	
example,	5	in	the	figure),	store	it	
at	the	next	occupied	slot	(eg.	6)	

Distributed	Systems,	Edinburgh,	2018	 42	

0	

1	

2	

3	

4	

5	

6	

7	



Example	system:	Chord	
•  When	a	node	wants	to	join,	it	

finds	occupied	slots	just	before/
aper	itself	

•  Example:	5	wants	to	join	
–  5	has	to	know	at	least	one	node	
already	in	system,	say	node	1.	

–  5	sends	search	message	for	itself	
to	1	

–  The	message	gets	forwarded	
using	next	pointers	

–  Node	3	and	6	realize	that	they	
are	neighbors	of	5	

–  Message	sent	back	to	5		

Distributed	Systems,	Edinburgh,	2018	 43	

0	

1	

2	

3	

4	

5	

6	

7	



Example	system:	Chord	

•  6	can	send	5’s	hash	table	
to	5	when	5	joins	

•  Each	node	replicates	all	
the	data	for	several	
nodes	before/aper	itself	

•  If	a	node	fails,	its	data	is	
sDll	preserved	

Distributed	Systems,	Edinburgh,	2018	 44	

0	

1	

2	

3	

4	

5	

6	

7	



Example	system:	Chord	

•  Problem:	search	is	sDll	
inefficient	

•  It	goes	sequenDally	along	
the	ring	

•  Cost:	O(n)	
•  Now	imagine	a	ring	with	
a	million	nodes!	

Distributed	Systems,	Edinburgh,	2018	 45	

0	

1	

2	

3	

4	

5	

6	

7	



Chord:	more	efficient	search	

•  Add	some	extra	links	in	
the	overlay	graph	

•  To	find	node	x,	go	to	the	
neighbor	that	is	nearest	
to	the	desDnaDon	

•  Which	extra	links	to	add	
to	the	network?	

Distributed	Systems,	Edinburgh,	2018	 46	



Chord:	more	efficient	search	

•  At	node	v,	add	links	to	
–  (2i+v)	mod	n	
– Or	the	first	occupied	slot	
aper	

•  Each	node	has	log	n	
addiDonal	links	
– O(log	n)	storage	

•  Search	is	efficient	

Distributed	Systems,	Edinburgh,	2018	 47	



Chord:	more	efficient	search	

•  Suppose	we	are	at	node	v	
•  And	searching	for	node	v
+	x	

•  There	is	at	least	one	link	
to	a	node	between											
v	+	x/2	and	v+x	

•  The	message	goes	to	that	
node	

Distributed	Systems,	Edinburgh,	2018	 48	



Chord:	more	efficient	search	

•  The	distance	to	the	
desDnaDon	becomes	half	
in	each	step	

•  How	many	steps	does	it	
take?	

Distributed	Systems,	Edinburgh,	2018	 49	



Chord:	more	efficient	search	
•  The	distance	d	to	the	
desDnaDon	becomes	half	
or	less	in	each	step	

•  How	many	steps	does	it	
take?	

•  The	sequence	d,	d/2,	d/4	…	
converges	to	1		

•  In	O(lg	n)	steps		
–  (since	d<=n)	

Distributed	Systems,	Edinburgh,	2018	 50	



P2P	–	Some	thoughts	
•  File	sharing	has	been	studied	a	lot	
•  Other	things	much	less	
•  Most	p2p	designs	are	old	
•  Things	have	changed	a	lot	in	recent	years	
– More	mobile,	portable	devices	
–  Faster	networks	
–  Bluetooth,	nfc,	social	networks	
–  LocaDons!	

•  What	are	good	p2p	designs	in	the	new	
environments?		

	

	
	

Distributed	Systems,	Edinburgh,	2018	 51	



P2P	–	Can	you..	

•  Design	a	system	for	personal	storage?	
– Not	just	copies	
– Needs	to	be	reliable	
•  No	use	if	my	data	is	not	available	when	someone	else	is	
offline	
•  Need	mulDple	replicas	
•  Need	to	keep	these	replicas	updated	

– What	other	properDes?		

Distributed	Systems,	Edinburgh,	2018	 52	


