
Distributed	Systems	
	

Global	states	and	snapshots	

Rik	Sarkar	
Edinburgh	Spring	2018	

	
University	of	Edinburgh	

Distributed	snapshots	
•  Take	a	“snapshot”	of	a	system	
•  E.g.	for	backup:	If	system	fails,	it	can	start	up	
from	a	meaningful	state	

•  Problem:		
–  Imagine	a	sky	filled	with	birds.	The	sky	is	too	large	to	
cover	in	a	single	picture.		

– We	want	to	take	mulLple	pictures	that	are	consistent	
in	a	suitable	sense	
•  Eg.	We	can	correctly	count	the	number	of	birds	from	the	
snapshot	

2	

Events	and	states	

•  Every	process	goes	through	alternate	
sequence	of	states	and	events	

•  It	is	enough	to	count	the	states	for		correct	
clock	sequence	

3	

p1	

p2	

2	 3	

1	 3	 4	

7	 8	4	 5	1	 6	

2	 4	

Events	and	states	

•  Happened	before	and	concurrent	relaLons	for	
states	are	defined	similarly	

4	

p1	

p2	

2	 3	

1	 3	 4	

7	 8	4	 5	1	 6	

2	 4	

Distributed	snapshots	

•  Global	state:	
–  State	of	all	processes	
– And	state	of	all	communicaLon	channels	

•  What	message	it	is	carrying	

•  Consistent	cuts:	
– A	set	of	states	of	all	processes	is	a	consistent	cut	if:	
–  For	any	states	s,	t	in	the	cut,	s||t	

•  If	a⟶b,	then	the	following	is	not	allowed:	
–  b	is	before	the	cut,	a	is	aXer	the	cut	

5	

Consistent	cut	

6	

Distributed	snapshot	algorithm	
•  Find	a	set	of	states:	one	for	each	process	
– Ask	each	process	to	record	its	state	

•  The	set	of	states	must	be	a	consistent	cut	

•  AssumpLons:	
–  CommunicaLon	channels	are	FIFO	
–  Processes	communicate	only	with	neighbors	
–  (We	assume	for	now	that	everyone	is	neighbor	of	
everyone)	

–  Processes	do	not	fail	

7	

Global	snapshot:	Chandy	and	Lamport	
algorithm	

•  One	process	iniLates	snapshot	and	sends	a	
marker	

•  Marker	is	the	boundary	between	“before”	and	
“aXer”	the	snapshot	

8	

p1	

p2	

2	 3	

1	 3	 4	

7	 8	4	 5	1	 6	

2	 4	

Global	snapshot:	Chandy	and	Lamport	algorithm	
•  Marker	send	rule	(Process	i)	

–  Process	i	records	its	state	
–  On	every	outgoing	channel	where	a	marker	has	not	been	sent:	

•  i	sends	a	marker	on	the	channel		
•  before	sending	any	other	message	

•  Marker	receive	rule	(Process	j	receives	marker	on	channel	
C)	
–  If	j	has	not	received	the	marker	before	

•  Record	state	of	j	
•  Record	state	of	C	as	empty	
•  Follow	marker	send	rule	

–  Else:	
•  Record	the	state	of	C	as	the	set	of	messages	received	on	C	since	
recording	j’s	state	and	before	receiving	marker	on	C	

•  Algorithm	stops	when	all	processes	have	received	marker	
on	all	incoming	channels	

9	

Complexity	

•  Message?	

10	

Property	

•  If	s1		(in	p1)	⟶	s2	(in	p2)	
–  Then	s2	is	before	the	cut	⟹	s1	is	before	the	cut	
–  Suppose	not	&	s1	is	aXer	the	cut.	

•  Then	p1	recorded	its	state	before	s1	
•  Consider	the	message	m	from	p1	to	p2	

–  This	causes	the	relaLon	s1⟶s2	to	be	true	
•  p1	must	have	recorded	its	state	before	sending	m	
•  p1	must	have	sent	marker	to	p2	before	sending	m	

–  By	marker	sending	rule	
•  p2	must	have	received	marker	before	m	and	before	s2	
•  s2		must	be	aXer	the	cut	–	contradicLon.	

11	

ApplicaLon	of	snapshots:	
DetecLon	of	stable	predicates	

•  Stable	predicate:		
–  A	property	that	once	it	becomes	true,	stays	true	(unLl	
detecLon	and	intervenLon)	

–  Eg:		
•  Deadlocked	:	every	process	in	some	subset	is	waiLng	for	another	
•  Terminated	:	once	ended,	computaLon	remains	stopped	
•  Loss	of	token	:	in	mutual	exclusion,	process	with	token	can	access	
a	resource.	If	token	gets	lost	due	to	failure,	it	stays	lost.	

•  Garbage	:	If	no-one	has	a	reference	to	a	file,	that	file	can	be	
deleted	

–  So,	if	such	a	property	was	true	before	the	snapshot,	it	is	
true	in	the	snapshot,	and	can	be	detected	by	checking	the	
snapshot	

12	

Where	snapshots	are	not	useful:	
non-stable	predicates	

•  E.g.		
– Was	this	file	opened	at	some	Lme?	
– Was	x1-x2	<	δ	ever?	

– Non-stable	predicates	may	have	happened,	but	
then	system	state	changes..	

13	

Types	of	non-stable	predicates	

•  Possibly	B:	
– B	could	have	happened	

•  Definitely	B:	
– B	definitely	happened	

•  How	can	we	check	for	definitely	B	and	
possibly	B?		

14	

CollecLng	global	states	

•  Each	process	notes	its	every	state	&	vector	
Lmestamp	
– Sends	it	to	a	server	for	recording	
– Note:	we	do	not	need	to	save	every	Lme	a	state	
changes:	only	when	it	affects	the	predicates	to	be	
checked	
•  Assuming	we	know	what	predicates	will	be	checked	

•  The	server	looks	at	these	and	tries	to	figure	
out	if	predicate	B	was	possibly	or	definitely	
true	

15	

Possible	states	

•  Server	checks	for	possible	states:	consistent	
cuts	for	B:	x=y	

16	

p1	

p2	

2,0	 3,0	

0,1	 2,2	 2,3	

4,4	1,0	

2,4	
X	=	1	 X	=	5	X	=	3	

Y	=	5	 Y	=	5	

X	=	5	

Y	=	3	 Y	=	4	 Y	=	7	

Note	on	difference	with	books	
•  We	are	using	the	following	notaLon	that	may	differ	from	books	

–  The	circles	are	‘states’,	and	bars	are	‘events’	
–  We	are	concerned	with	which	pairs	of	states	form	consistent	cuts	
–  An	event’s	occurrence	changes	the	state	of	the	process	
–  We	are	following	the	convenLon	that	an	event	carries	the	label	of	the	state	in	

which	it	happened	i.e.	the	label	of	the	circle	to	the	leX	of	it.	
•  You	can	see	this	in	the	vector	clock	label	carried	by	the	messages	

–  Some	books	follow	a	different	convenLon	that	the	event	(message)	carries	the	
label	of	the	state	aXer	the	event	

–  SomeLmes	the	representaLon	of	the	states	are	merged	with	the	events	
•  This	does	not	change	any	of	the	fundamental	ideas	or	properLes	of	

causality	or	snapshots	
–  But	labels	in	diagrams	may	look	a	liole	different	

•  In	exam,	you	are	allowed	to	use	either	convenLon	if	you	are	drawing	a	
diagram.	MenLon	which	you	are	using.	

•  If	a	problem	explicitly	gives	a	diagram,	it	will	use	the	convenLon	in	the	
slides,	of	separaLng	states	and	events	

17	

Possible	states	

•  Server	checks	for	possible	states:	consistent	
cuts	for	B:	x=y	

18	

p1	

p2	

1,0	 2,0	

1,1	 1,2	

4,2	

X	=	1	 X	=	5	X	=	3	

Y	=	1	 Y	=	5	

X	=	9	

Y	=	3	 Y	=	7	

S0,0	

S1,0	

0,0	

0,0	

S2,0	

S2,1	

S2,2	

3,0	

S3,0	

S3,1	

S3,2	

1,3	

S3,3	

S4,3	

S2,3	

X	=	5	

	Lapce	of	global	states	(consistent	
cuts)	

•  Any	downward	path	
from	IniLal	state	to	
final	state	is	a	valid	
execuLon	
– A	possible	sequence	
of	states	that	could	
have	existed	

19	

Time	

S0,0	

S1,0	

S2,0	

S2,1	

S2,2	

S3,0	

S3,1	

S3,2	

S3,3	

S4,3	

level	

0	

1	

2

5	

3	

4	

6	

7	

S2,3	

	Lapce	of	global	states	(consistent	
cuts)	

•  Possibly	B:	
– B	occurs	on	at	least	
one	downward	path	

•  Definitely	B	
– B	occurs	on	all	
downward	paths	

20	

Time	

S0,0	

S1,0	

S2,0	

S2,1	

S2,2	

S3,0	

S3,1	

S3,2	

S3,3	

S4,3	

level	

0	

1	

2

5	

3	

4	

6	

7	

S2,3	

	Lapce	of	global	states	(consistent	
cuts)	

•  How	do	you	compute	
possibly	and	
definitely	B?	

21	

Time	

S0,0	

S1,0	

S2,0	

S2,1	

S2,2	

S3,0	

S3,1	

S3,2	

S3,3	

S4,3	

level	

0	

1	

2

5	

3	

4	

6	

7	

S2,3	

	Lapce	of	global	states	(consistent	
cuts)	

•  Possibly	B:	
– B	occurs	on	at	least	
one	downward	path	

•  Do	a	BFS	from	start	
state	
–  If	there	is	one	state	
with	B	true,	then	
possibly	B	is	true	

22	

Time	

S0,0	

S1,0	

S2,0	

S2,1	

S2,2	

S3,0	

S3,1	

S3,2	

S3,3	

S4,3	

level	

0	

1	

2

5	

3	

4	

6	

7	

S2,3	

	Lapce	of	global	states	(consistent	
cuts)	

•  Definitely	B	
–  B	occurs	on	all	downward	
paths	

•  Do	a	BFS	from	start	state	
–  Do	not	visit	nodes	with	B:	
true	

–  If	BFS	reaches	final	state	
and	B	is	false	in	final	
state	then	Definitely	B	is	
false	

–  Else	Definitely	B	is	true	

23	

Time	

S0,0	

S1,0	

S2,0	

S2,1	

S2,2	

S3,0	

S3,1	

S3,2	

S3,3	

S4,3	

level	

0	

1	

2

5	

3	

4	

6	

7	

S2,3	

What	is	the	computaLonal	
complexity?	

24	

What	is	the	computaLonal	
complexity?	

•  Possibly	exponenLal	in	number	of	processes	
•  Problem	is	NP-complete	

•  ObservaLon:	more	messages	reduces	
complexity!	

25	

