Distributed Systems

Distributed Consensus

He Sun
School of Informatics
University of Edinburgh

&9% THE UNIVERSITY
6N} of EDINBURGH

Outline

» Fault-tolerant consensus in synchronous systems
* Link failures:
— The Two Generals Problem
* Process failures:
— Stopping and Byzantine failure models
— Algorithms for agreement with stopping and Byzantine failures

— Exponential information gathering

Distributed Consensus

Abstract problem of reaching agreement among processes in a distributed
system, when they all start with their own “opinions”.

Complications: Failures (process, link); timing uncertainties.

Motivation:

— Database transactions: Commit or abort
— Aircraft control:
e Agree on which plane should go up/down, in resolving encounters (TCAS)

— Resource allocation: Agree on who gets priority for obtaining a resource, doing

the next database update, etc.
Fundamental problem
We’'ll revisit it several times:

— With link failures, processor failures.

— Algorithms, impossibility results.

Formal Problem Statement

G = (V,E), undirected graph (bidirected edges)
Synchronous model, n processes

Each process has input 1 (attack) or O (don’t attack).

Any subset of the messages can be lost.

All should eventually set decision output variables to 0 or 1.

Correctness conditions:

— Agreement: No two processes decide differently.
— Validity:
e [f all start with O, then O is the only allowed decision.

e |f all start with 1 and all messages are successfully delivered, then 1 is the

only allowed decision.

Alternatively...

e Stronger validity condition:
— If anyone starts with O then O is the only allowed decision.
— If all start with 1 and all messages are successfully delivered, then 1 is
the only allowed decision.
e Guidelines:
— For designing algorithms, try to use stronger correctness conditions
(better algorithm).
— For impossibility results, use weaker conditions (better impossibility

result).

Impossibility Result for 2-Vertex Graph

»

O « - O

Proof: By contradiction.

Suppose we have a solution---a process (states, transitions) for
each index 1, 2.

Assume WLOG that both processes send messages at every round.
Could add dummy messages.

Proof based on limitations of local knowledge.

Start with o, the execution where both start with 1 and all
messages are received.

e By termination condition, both eventually decide.
e Say, by r rounds.

e By validity, both decide on 1.

Impossibility Result for 2-Vertex Graph

o: Same as a, but lose all messages after Process 1 Process 2
round 7.
— Doesn’t matter, since they’ve already decided by Rd 1
round 7. Rd 2

— So, both decide 1 in ;.

o, : Same as o, but lose the last message Rd 3

from process 1 to process 2.

— Claim o, indistinguishable from o, by process 1,
denoted by a,; ~! a.,.

— Formally, 1 sees the same sequence of states,

incoming and outgoing messages.
5 g0INg 5 Rd r-1

— So process 1 also decides 1 in a.,.

— By agreement, process 2 decides 1 in a.,. Rdr

Continuing

03 Same as a.,, but lose the last message from
process 2 to process 1.

— Then a,~?a;.
— So process 2 decides 1 in o.;.
— By agreement, process 1 decides 1 in a.

o, : Same as o, but lose the last message from
process 1 to process 2.

— Thenaz~tao,
— So process 1 decides 1 in a,,.
— So process 2 decides 1in a,.

Keep removing edges, get to:

Process 1 Process 2

Rd 1

Rd 2

Rd 3

Rd r-1

Rdr

The Contradiction

Q.1 : Both start with 1, no messages received.
— Still both must eventually decide 1.

O, . process 1 starts with 1, process 2 starts with 0, no
messages received.

— Then ay,,y ~ 0y,

— So process 1 decides 1 in a,,,,.

— So process 2 decides 1 in a.,,,,.

Ol,,.3 - Both start with 0, no messages received.
— Then o,,,,~* 0,3
— So process 2 decides 1in a,,,s.

— So process 1 decides 1in a,,,s.

But a,,,; contradicts weak validity!

Consensus with Process Failure

Stopping failures (crashes) and Byzantine failures (arbitrary
processor malfunction, possibly malicious)

Agreement problem:
- n-node connected, undirected graph, known to all processes.
— Input v from a set I/, in some state variable.
— Output v from V, by setting decision := v.
— Bounded number < f of processors may fail.
Bounded number of failures:
— Atypical way of describing limited amounts of failure.

— Alternatives: Bounded rate of failure; probabilistic.

Stopping Agreement

e Assume process may stop working at any point:
— Between rounds.

— While sending messages at a round; any subset of intended messages
may be delivered.

e (Correctness conditions:
— Agreement: No two processes decide on different values.
e “Uniform agreement”

— Validity: If all processes start with the same v, then v is the only
allowable decision.

— Termination: All nonfaulty processes eventually decide.
e Alternatively:

— Stronger validity condition: Every decision value must be some process’
initial value.

Byzantine Agreement

e “Byzantine Generals Problem”

— Originally “Albanian Generals”

e Faulty processes may exhibit “arbitrary behavior”:

— Can start in arbitrary states, send arbitrary messages, perform arbitrary
transitions.

— But can’t affect anyone else’s state or outgoing messages.

— Often called “malicious” (but they aren’t necessarily).
e Correctness conditions:

— Agreement: No two nonfaulty processes decide on different values.

— Validity: If all nonfaulty processes start with the same v, then v is the
only allowable decision for nonfaulty processes.

— Termination: All nonfaulty processes eventually decide.

Technicality about stopping vs.
Byzantine agreement

e A Byzantine agreement algorithm doesn’t necessarily solve

stopping agreement.

e For stopping, all processes that decide, even ones that later

fail, must agree (uniformity condition).

e Too strong for Byzantine setting.

Complexity Measures

e Time: Number of rounds until all nonfaulty processes decide.

e Communication: Number of messages, or number of bits.

— For Byzantine case, just count those sent by nonfaulty

pProcesses.

Simple Algorithm for Stopping Agreement

Assume complete n-node graph.

ldea:

— Processes keep sending all V values they’ve ever seen.
— Use simple decision rule at the end.

In more detail:

— Process i maintains W € V, initially containing just i’s initial
value.

— Repeatedly: Broadcast I/, and add received elements to V.
— After k rounds:

e If |W]| = 1 then decide on the unique value.

e Else decide on default value vy € V.
Question: How many rounds?

How many rounds?

Depends on number f of failures to be tolerated.
f = 0:
- k = 1isenough.
— All get same V.
f =1
- k = 1 doesn’t work:
e Say process 1 has initial value u, others have initial value v.
e Process 1 fails during round 1, sends to some and not others.
e Sosome have W = {v}, others {u, v}, may decide differently.
- k = 2 does work:
¢ If someone fails in round 1, then no one does in round 2.
General f:
ek =f+1

Correctness Proof (for k = f + 1)

Claim 1: Suppose 1<r<f + 1and no process fails during
round r. Let i and j be two processes that haven’t failed by
the end of round r. Then W; = W, right after round r.

Proof: Each gets exactly the union of all the W’s of the non-
failed processes at the beginning of round r.

“Clean round”---allows everyone to resolve their differences.

Claim 2: Suppose W sets are identical just after round 7, for
all processes that are still non-failed. Then the same is true
foranyr’ > r.

Proof: Obvious.

Checking Correctness Conditions

e Agreement:

— droundr,1<r<f + 1, at which no process fails (since < f failures).
— Claim 1 says all that haven’t yet failed have same W after round 7.
— Claim 2 implies that all have same W after round f + 1.

— So nonfaulty processes pick the same value.

Validity:
— |If everyone starts with v, then v is the only value that anyone ever gets,
so |W| = 1 and v will be chosen.
Termination:

— Obvious from decision rule.

Complexity Bounds

e Time: f + 1 rounds
¢ Communication:
— Messages: < (f + 1) n?
— Message bits: Multiply by n b

T

Number of values A fixed bound on

sent in a message number of bits to
represent a value in V.

e Can improve communication:
— Messages: < 2 n?

— Message bits: Multiply by b

Improved algorithm (Opt)

Each process broadcasts its own value in round 1.

May broadcast at one other round, just after it first hears of

some value different from its own.

In that case, it chooses just one such value to rebroadcast.

After f + 1 rounds:
— If [IW| = 1 then decide on the unique value.

— Else decide on default value v,,.

Correctness

Relate behavior of Opt to that of the original algorithm.

e Specifically, relate executions of both algorithms with the same
inputs and same failure pattern.

e Let O denote the W set in the optimized algorithm.
e Relation between states of the two algorithms:

— For every vertex i:
e 0, cW..
e If|W;] = 1thenO; = W,.
e If |W;| > 1then|0;| > 1.

‘\

Not necessarily the same set,
but both > 1.

e Relation after f + 1 rounds implies same decisions.

Proof of Correctness

e |nduction on number of rounds

e Key ideas:
- 0, cW,
e Obvious, since Opt just suppresses sending of some messages from Unopt.
— If |W;| = 1then0O;, = W;.
e Nothing suppressed in this case.

e Actually, follows from the first property and the fact that O, is always
nonempty.

- |f|Wl| > 1then|0l-| > 1.
e Inductive step, for some round 7:

e If in Unopt, i receives messages only from processes with |W| = 1, thenin
Opt, it receives the same sets. So afterround r, 0, = W;

* Otherwise, in Unopt, i receives a message from some process j with |[W | >
1. Then afterround r, |[W;| > 1and |0;| > 1.

Exponential Information Gathering (EIG)

A strategy for consensus algorithms, which works for Byzantine
agreement as well as stopping agreement.

Based on EIG tree data structure.

EIG tree Tn, £ for n processes, f failures:
- [+ 2 levels

— Paths from root to leaf correspond to strings of f + 1 distinct process
names.

VAN /L\g /1\

IVIVIRIVIVIVIVIVITIPIVI

123 124 132 etc.

EIG Stopping Agreement Algorithm

Each process i uses the same EIG tree, T, .

Decorates nodes of the tree with values iﬁ I/, level by level.
Initially: Decorate root with i’s input value.

Round r = 1:

— Send all level r — 1 decorations for nodes to everyone.
¢ Including yourself---simulate locally.

— Use received messages to decorate level 7 nodes---to determine label, append
sender’s id at the end.

— If no message received, use L.
The decoration for node (i, iy, I3, ..., [;) in I’s tree is the value v such that
that i,’s initial value was v.
Decision rule for stopping case:
— Trivial
— Let W =set of all values decorating the local EIG tree.
— If |W| = 1 decide that value, else default v,,.

e 3 processes, 1 failure A
e Use T, :
' 1 2 3

Initial values:

1 0 1

PR
m ELLELD

Process 1 Process 2 Process 3

e Process 2 is faulty, fails -
after sending to process
1 at round 1. 1 2 3
e After round 1: A A A
12 13 21 23 31 32

m mAAA

Process 1 Process 2 Process 3

Example

e After round 2: !
1 2 3
12 13 21 23 31 32
1 0 1
Process 1 Process 2 / Process 3

p3 discovers that p2’s value is 0 after round 2, by hearing it from p1.

Correctness and Complexity

Correctness similar to previous algorithms.

Time: f + 1 rounds, as before.

Messages: < (f + 1) n?

Bits: Exponential in number of failures, O (n/ 1 b)

Can improve as before by only relaying the first two messages
with distinct values.

Extension:

— The simple EIG stopping algorithm, and its optimized variant, can be used
to tolerate worse types of failures.

— Not full Byzantine model---that will require more work...

— Rather, a restricted version of the Byzantine model, in which processes
can authenticate messages.

— Removes ability of process to relay false information about what other
processes said.

