
Distributed Systems 
 

Time, Clocks, and Ordering of Events

Björn Franke

University of Edinburgh
2016/2017

Distributed Systems, Edinburgh, 2016

Today

• Last lecture: Basic Algorithms

• Today:
• Time, clocks, NTP
– Ref: CDK

• Causality, ordering, logical clocks:
– Ref: VG, CDK

2

Distributed Systems, Edinburgh, 2016

Time

• Ordering of events are important:
–Which happened first

• Need synchronisation between sender and
receiver

• Coordination of joint activity etc..

3

Distributed Systems, Edinburgh, 2016

Coordinated Universal Time

• Coordinated universal time (UTC)
– Time maintained for civil use  

(on atomic clock)
– Kept within 0.9 seconds of exact mean time

for Greenwich

4

Distributed Systems, Edinburgh, 2016

Clocks

• Piezoelectric effect:
– Squeeze a quartz crystal:  

generates electric field
– Apply electric field: crystal bends

• Quartz crystal clock:
– Resonation like a tuning fork
– Accurate to parts per million
– Gain/lose ½ second per day

5

Distributed Systems, Edinburgh, 2016

Challenges

• Two clocks do not agree perfectly

• Skew: The time difference between two clocks

• Quartz oscillators vibrate at different rates

• Drift: The difference in rates of two clocks

• If we had two perfect clocks:
– Skew = 0
– Drift = 0

6

Distributed Systems, Edinburgh, 2016

When we detect a clock has a skew

• Eg: it is 5 seconds behind
• Or 5 seconds ahead

• What can we do?

7

Distributed Systems, Edinburgh, 2016

When we detect a clock has a skew

• e.g. it is 5 seconds behind
–We can advance it 5 seconds to correct
– Might skip over event scheduled in-between

• Or 5 seconds ahead
– Pushing back 5 seconds is a bad idea

• Message was received before it was sent
• Document closed before it was saved etc..

–We want monotonicity: time always increases
–We want continuity: time doesn’t make jumps

8

Distributed Systems, Edinburgh, 2016

When we detect a clock has a skew

• e.g. it is behind
– Run it faster until it catches up

• It is ahead
– Run it slower until it catches up

• This does not guarantee correct clock in
future
– Need to check and adjust periodically

9

Distributed Systems, Edinburgh, 2016

How clocks synchronise

• Obtain time from time server:

10

Client Server

Request time

Time : 00:05:20

Distributed Systems, Edinburgh, 2016

How clocks synchronise

• Obtain time from time server:

• Time is inaccurate
– Delays in message transmission
– Delays due to processing time
– Server’s time may be inaccurate

11

Client Server

Request time

Time : 00:05:20

Distributed Systems, Edinburgh, 2016

Christian’s algorithm
• Compensate for delays

– Request sent at T0

– Reply received at T1

– Assume delays are symmetric

12

Tserver

Request
Reply

T0
T1

Distributed Systems, Edinburgh, 2016

Christian’s algorithm

13

Tserver

Request
Reply

T0
T1

Tnew = Tserver+ (T1 – T0)/2

Distributed Systems, Edinburgh, 2016

Christian’s algorithm

14

Tserver

Request
Reply

T0
T1

Tnew = Tserver+ (T1 – T0)/2

Example:  
T0 = 5:05:08.100, T1 = 5:05:9.500  
Tserver= 5:05:9.100
Tnew = 5:05:09:800

Distributed Systems, Edinburgh, 2016

Christian’s algorithm

15

• If minimum message transit time Tmin is known

• Range = T1 – T0 - 2Tmin

• Accuracy of result: (T1 – T0 - 2Tmin)/2
Tserver

Request
Reply

T0
T1

Tmin
Tmin

Distributed Systems, Edinburgh, 2016

Berkeley algorithm

• Assumes no machine has perfect time
• Takes average of participating computers
• Sync all clocks to average

16

Distributed Systems, Edinburgh, 2016

Berkeley algorithm

• One computer is elected as server (master)
– Others are slaves

• Master polls each machine for time
• Compute average
– Key idea: average will cancel out skews

• Send each clock the offset by which it
needs to adjust time
– Sending time itself is susceptible to network

delays

17

Distributed Systems, Edinburgh, 2016

Berkeley algorithm

• Fault tolerance
– Ignore readings of clocks with too large skews
– If master fails: run an election algorithm and

a slave becomes master

18

Distributed Systems, Edinburgh, 2016

Network time protocol (NTP)

• Enable clients to synchronise to UTC with
reasonable accuracy

• Reliable:
– Redundant servers and paths

• Scalable:
– Enable many clients to synchronise frequently

• Security
– Authenticate sources

19

Distributed Systems, Edinburgh, 2016

Network time protocol

• Servers in strata
• 1: directly connected to

atomic, GPS etc clock
– May inter-communicate for

cross checks

• 2: few microseconds of
level 1 etc

20

Distributed Systems, Edinburgh, 2016

Network time protocol

• Uses multiple rounds of
messages to get better
time

• Large number of servers

• Uses a multiple spanning
tree (MST) for inter- 
server synchronisation

21

Distributed Systems, Edinburgh, 2016

Time and Synchronisation

• Important topic in distributed systems
• Many different methods
– Depending on systems, requirements…

• No perfect solution

22

Distributed Systems, Edinburgh, 2016

Special Relativity

• Light cone:

23

e

Things that could have
caused/influenced e

Things that e can have
cause/influence

Distributed Systems, Edinburgh, 2016

GPS

• Satellites: Have very accurate atomic clocks
• Transmit signals: “satID, time T0,…”
• Receivers measure distance:

– (T1 – T0)*c [c = speed of light]
– Distance from multiple satellites gives location
– Complex computation, taking into account possible

errors, clock drift and skew etc..
• Needs relativistic computation

– Special relativity: Clocks on fast moving satellites run
slow (microseconds per day drift for satellites)

– General relativity: Clocks far from heavy bodies run fast
(microseconds per day)

24

