
Distributed Systems

Björn Franke

University of Edinburgh
2016/2017

Distributed Systems, Edinburgh,
2016/2017

Course Information

• Instructors:
– Rik Sarkar 

IF 3.45, rsarkar@inf.ed.ac.uk
– Björn Franke 

IF 1.04, bfranke@inf.ed.ac.uk
– Teaching Assistant for coursework: Abhirup Ghosh  

abhirup.ghosh@ed.ac.uk  

• Web site:  
http://www.inf.ed.ac.uk/teaching/courses/ds

• Lectures:
– Tuesday/Friday: 9:00-9:50, Teviot LT, MEDS

2

mailto:rsarkar@inf.ed.ac.uk
mailto:bfranke@inf.ed.ac.uk
http://www.inf.ed.ac.uk/teaching/courses/ds

Distributed Systems, Edinburgh,
2016/2017

Exams and Assignments

• Grading:
– Coursework: 1 assignment, 25%

• Based on real distributed systems framework,  
e.g. Apache Ignite
• Substantial application involving serious programming,  

but with with several intermediate steps
– Final Exam: 75%

• Coursework (tentative dates)
– Release: Tuesday, October 4
– Submission: Thursday, November 17

3

Distributed Systems, Edinburgh,
2016/2017

Reading & Books

• No required textbook

• Suggested references:
– [CDK] Coulouris, Dollimore, Kindberg; Distributed

Systems: Concepts and Design
• 4th Edition: http://www.cdk4.net/wo
• 5th Edition: http://www.cdk5.net/wo

– [VG] Vijay Garg; Elements of Distributed Computing
– [NL] Nancy Lynch; Distributed Algorithms

4

http://www.cdk4.net/wo
http://www.cdk4.net/wo
http://www.cdk5.net/wo

Distributed Systems, Edinburgh,
2016/2017

What is a distributed system?

5

Distributed Systems, Edinburgh,
2016/2017

What is a distributed system?

• Multiple computers working together on one task
• Computers are connected by a network, and exchange

information

6

Distributed Systems, Edinburgh,
2016/2017

What is a distributed system?

• Multiple computers working together on one task
• Computers are connected by a network, and exchange

information

7

Distributed Systems, Edinburgh,
2016/2017

Networks vs Distributed Systems

8

Distributed Systems, Edinburgh,
2016/2017

Networks vs Distributed Systems

data transport
routing

 medium access

Networks: How to send
messages from one computer

to another

Computation
Using many computers
Sending messages to

each other

Distributed Systems: how to
write programs that use the

network to make use of
multiple computers

9

Distributed Systems, Edinburgh,
2016/2017

Distributed Systems: Examples

• Web browsing:

 client server

• In this case:
– Client requests what is needed
– Server computes and decides what is to be shown
– Client shows information to user

10

Distributed Systems, Edinburgh,
2016/2017

Distributed Systems: Examples

• Multiplayer Games
– Different players are doing different things
– Their actions must be consistent

• Don’t allow one person to be at different locations in
views of different people

• Don’t let two people stand at the same spot
• If X shoots Y, then everyone must know that Y is dead

– Made difficult by the fact that players are on
different computers

– Sometimes network may be slow
– Sometimes messages can be lost

11

Distributed Systems, Edinburgh,
2016/2017

Distributed Systems: Examples

• Stock markets: Multiplayer
games with High stakes!

• Everyone wants information
quickly and to buy/sell
without delay

• Updates must be sent to
many clients fast

• Transactions must be
executed in right order

• Specialized networks worth
millions are installed to
reduce latency

12

Distributed Systems, Edinburgh,
2016/2017

Distributed Systems: Examples

• Hadoop
– A big data processing framework
– Mapper nodes partition data,

reducer nodes process data by
partitions

– User decides partitioning, and
processing of each partition

– Hadoop handles tasks of moving
data from node to node

– Hadoop/MapReduce is a specific
setup for distributed processing
of data

13

Distributed Systems, Edinburgh,
2016/2017

Distributed Systems: Examples

• Main issue in networking: one node does not have
complete (global) knowledge of the rest of the
network
– Need distributed solutions – network

protocols
– Nodes work with local information

14

Distributed Systems, Edinburgh,
2016/2017

Distributed Systems: Examples
• Mobile and Sensor Systems

– Mobile phones and smart sensors are
computers

– Opportunity to process data at
sensors instead of servers

– Distributed networked operation
– In addition, nodes are low powered,

battery operated
– Nodes may move

• Ubiquitous computing & Internet
of things
– Embedded computers are

everywhere in the environment
– We can use them to process data

available to them through sensors,
actions of users, etc.

– Networking and distributed
computing everywhere in the
environment

15

Distributed Systems, Edinburgh, 2015

Distributed Systems: Examples
• Autonomous vehicles

– Computer operated
vehicles, will use sensors to
map the environment and
navigate

– Sensors in the car, in the
environment, other cars

– Need to communicate and
analyze data to make quick
decisions

– Many sensors and lots of
data

– Strict consistency rules –
two cars cannot be at the
same spot at the same time!

– Need very fast information
processing

– Nodes are mobile 16

Distributed Systems, Edinburgh,
2016/2017

Challenges in Distributed Computing

• Fundamental issue: Different nodes have
different knowledge. One node does know
the status of other nodes in the network

• If each node knew exactly the status at all
other nodes in the network, computing would
be easy.

• But this is impossible, theoretically and
practically

17

Distributed Systems, Edinburgh,
2016/2017

Theory: Knowledge  
cannot be perfectly up to date

– Information transmission
is bounded by speed of
light (plus hardware and
software limitations of
the nodes & network)

– New things can happen
while information is
traveling from node A to
node B

– B can never be perfectly
up to date about the
status of A

18

A B

e1

B learns
about e1

Ti
m

e

C

e2
e3

Distributed Systems, Edinburgh,
2016/2017

Practical Challenges

• Communication is costly: It is not practical to
transmit everything from A to B all the time

• There are many nodes: Transmitting updates to all
nodes and receiving updates from all nodes are even
more impractical

19

Distributed Systems, Edinburgh,
2016/2017

• The critical question in distributed systems:

• What message/information to send to which nodes,
and when?

20

Distributed Systems, Edinburgh,
2016/2017

Example 1

• A simple distributed computation:
– Each node has stored a numeric value
– Compute the total of these numbers

Server

How many messages
does it take?

21

Distributed Systems, Edinburgh,
2016/2017

Example 1

• A simple distributed computation:
– Each node has stored a numeric value
– Compute the total of these numbers

Server
4

22

Distributed Systems, Edinburgh,
2016/2017

Example 2

• A simple distributed computation:
– Each node has stored a numeric value
– Compute the total of the numbers

Server

How many messages
does it take?

23

Distributed Systems, Edinburgh,
2016/2017

Example 2

• A simple distributed computation:
– Each node has stored a numeric value
– Compute the total of the numbers

Server

Total:
101 2 3 4Number of messages:

24

Distributed Systems, Edinburgh,
2016/2017

• Complexity may depend on the Network

25

Distributed Systems, Edinburgh,
2016/2017

Example 2

• A simple distributed computation:
– Each node has stored a numeric value
– Compute the total of the numbers

Server

Can you find a better, more efficient way?

a b c d

26

Example 2

• A simple distributed computation:
– Each node has stored a numeric value
– Compute the total of the numbers

Server a b c d

v(d)
V(c) +v(d)

v(b)+v(c)+v(d)

v(a)+v(b)+v(c)+v(d)

Cost: 4 messages

27

Distributed Systems, Edinburgh,
2016/2017

More Practical Challenges

• Time cannot be measured perfectly
– Clocks always move slightly faster/slower;

speeds change
– Hard to compare before/after relations

between events at different nodes
– Makes it difficult to keep causal relations

correct
– E.g. In a multi-player game, two players fired

their guns. Who shot first?

28

Distributed Systems, Edinburgh,
2016/2017

More Practical Challenges

• Failures
– Some nodes may fail
– Some communication links may fail, messages get

lost

– We need systems resilient to failures – it should
continue to work even if some nodes/links fail, or
at least recover from failures

– E.g. In network routing, if some nodes fail, the
routing protocols find new paths to the destination

29

Distributed Systems, Edinburgh,
2016/2017

More Practical Challenges

• Mobility
– Some nodes may be mobile
– Not easy to find and communicate with

moving nodes
– Communication properties, delays, message

loss rates etc change with changing locations
– Locations of nodes are important, determine

their needs and preferences

30

Distributed Systems, Edinburgh,
2016/2017

More Practical Challenges

• Scalability with size (number of nodes)
– Systems may need to grow in number of nodes when it

has to handle more data or users
– The design should easily adapt to this growth and not

get stuck trying to handle large amounts of data or
many nodes

– E.g. In a multiplayer game with many players, if all
actions of each player in every second is sent to all
other players, this will generate O(n2) messages every
second.

– Options:
• Make efficient systems that can handle O(n^2) messages per

second (more and more difficult with growing n)
• Or, make clever choices of which messages to send to which

players, and keep it manageable

31

Distributed Systems, Edinburgh,
2016/2017

More Practical Challenges

• Transparency
– User should not have to worry about details
• How many nodes
• How they are connected
• Locations, addresses
• mobility
• Failures
• concurrency
• Network protocols

32

Distributed Systems, Edinburgh,
2016/2017

More Practical Challenges

• Security
– Confidentiality – only authorized users can

access
– Integrity – should not get altered/corrupted or

get into an undesirable state
– Availability – should not get disrupted by

enemies (e.g. by a denial of service attack)

– Perfect security is impossible. Good practical
security is usually possible, but takes some
care and effort. Encryption helps.

33

Distributed Systems, Edinburgh,
2016/2017

Distributed computations: Examples

• Agreement
– Get nodes to agree on the value of something
• When should we go to the movie?
• What should be the multiplayer strategy?
• When should we sell the shares?
• …

34

Distributed Systems, Edinburgh,
2016/2017

Distributed computations: Examples

• Leader election
–Which node is the coordinator in Hadoop?
–Which node is the which returns the final

result?

35

Distributed Systems, Edinburgh,
2016/2017

Distributed computations: Examples

• Deciding matters of time:
–What happened first? A or B?
–What sequence of events definitely happened

and what cannot have happened?

36

Distributed Systems, Edinburgh,
2016/2017

Distributed computations: Examples

• Store and retrieve data
– Peer to peer systems
– Sensor networks

37

Distributed Systems, Edinburgh,
2016/2017

Distributed computations: Examples

• Aggregation:  
Getting data from many nodes
–What is the average temperature recorded by

the mobile phones?
– How many people are in the building?
–What is the maximum speed of cars on the

highway?

38

Distributed Systems, Edinburgh,
2016/2017

Summary: Distributed Systems
• Multiple computers operating by sending messages

to each other over a network
• Integral to many emerging trends in computing
• Reasons for distributed systems:

– Tasks get done faster
– Can be made more resilient: If one computer fails,

another takes over
– Load balancing and resource sharing
– Sometimes, systems are inherently distributed. E.g.

people from different locations collaborating on tasks,
playing games, etc.

– Brings out many natural questions about how natural
world, ecosystems, economies, emergent behaviors
work
• Eg. Birds flocking, fireflies blinking in sync, people walking

without colliding, economic game theory and equilibria…
39

Distributed Systems, Edinburgh,
2016/2017

Summary: Distributed Systems

• Examples:
– Web browsing
– Multiplayer games
– Digital (Stock) markets
– Collaborative editing (Wikipedia, reddit, slashdot..)
– Big data processing (hadoop etc)
– Networks
– Mobile and sensor systems
– Ubiquitous computing
– Autonomous vehicles

40Ref: CDK

Distributed Systems, Edinburgh,
2016/2017

Challenges in Distributed system design

• Lack of global knowledge
• No perfect (shared) clock
• Communication is costly in large volumes
• Failures of nodes/links, loss of messages
• Scalability
• Transparency
• Security
• Mobility

41

