
Distributed Systems
Coursework

Björn Franke

Overview
• Apache Ignite Framework

• Overview

• Coursework

• Getting started

• Example 1: “Hello, world”

• Example 2: Word count

• Specification

• Submission Instructions

• Sources of information & examples in this lecture:

• http://apacheignite.gridgain.org

• http://ggfabric.blogspot.co.uk

• https://www.gridgain.com/resources/papers/
introducing-apache-ignite

• Note: Piazza online forum now available!

http://apacheignite.gridgain.org
http://ggfabric.blogspot.co.uk
https://www.gridgain.com/resources/papers/introducing-apache-ignite

Apache Ignite Overview
• In-memory computing platform

• High-performance transactions

• Real-time streaming

• Fast analytics

• Single, comprehensive data access and processing layer

• Unified API: SQL, C++, .NET, Java/Scala/Groovy, Node.js

• Works on top of existing databases

Apache Ignite Overview

“collection of independent, well-integrated, in-memory
components geared to improve performance and scalability of

your application"

Cluster Functionality

Cluster functionality is provided via IgniteCluster interface. You can
get an instance of IgniteCluster from Ignite as follows:

Ignite ignite = Ignition.ignite();

IgniteCluster cluster = ignite.cluster();

Through IgniteCluster interface you can:
• Start and stop remote cluster nodes
• Get a list of all cluster members
• Create logical Cluster Groups

http://apacheignite.gridgain.org/v1.7/docs/cluster-groups

Data Grid Functionality

Data Streaming Functionality

Compute Grid Functionality

Service Grid Functionality
Service Grid allows for deployments of arbitrary user-defined services on the cluster. You
can implement and deploy any service, such as custom counters, ID generators,
hierarchical maps, etc.
Ignite allows you to control how many instances of your service should be deployed on
each cluster node and will automatically ensure proper deployment and fault tolerance of
all the services .

Distributed Data Structures
Ignite In-Memory Data Fabric, in addition to providing standard key-value map-like storage,
also provides an implementation of a fast Distributed Blocking Queue and Distributed Set.
IgniteQueue and IgniteSet, an implementation of
java.util.concurrent.BlockingQueue and java.util.Set interface respectively,
also support all operations from java.util.Collection interface. Both, queue and set
can be created in either collocated or non-collocated mode.

Ignite ignite = Ignition.ignite();

IgniteQueue<String> queue = ignite.queue(
 "queueName", // Queue name.
 0, // Queue capacity. 0 for unbounded queue.
 null // Collection configuration.
);

Messaging Functionality
Distributed Messaging functionality in Ignite is provided via IgniteMessaging interface. You can get an
instance of IgniteMessaging, like so:

Ignite ignite = Ignition.ignite();

IgniteMessaging rmtMsg = ignite.message(ignite.cluster().forRemotes());

// Add listener for unordered messages on all remote nodes.
rmtMsg.remoteListen("MyOrderedTopic", (nodeId, msg) -> {
 System.out.println("Received ordered message [msg=" + msg + ", from=" +
nodeId + ']');

 return true; // Return true to continue listening.
});

// Send ordered messages to remote nodes.
for (int i = 0; i < 10; i++)
 rmtMsg.sendOrdered("MyOrderedTopic", Integer.toString(i));

Distributed Events
Functionality

Ignite ignite = Ignition.ignite();

// Local listener that listens to local events.
IgnitePredicate<CacheEvent> locLsnr = evt -> {
 System.out.println("Received event [evt=" + evt.name() + ", key=" + evt.key() +
 ", oldVal=" + evt.oldValue() + ", newVal=" + evt.newValue());

 return true; // Continue listening.
};

// Subscribe to specified cache events occurring on local node.
ignite.events().localListen(locLsnr,
 EventType.EVT_CACHE_OBJECT_PUT,
 EventType.EVT_CACHE_OBJECT_READ,
 EventType.EVT_CACHE_OBJECT_REMOVED);

// Get an instance of named cache.
final IgniteCache<Integer, String> cache = ignite.cache("cacheName");

// Generate cache events.
for (int i = 0; i < 20; i++)
 cache.put(i, Integer.toString(i));

Getting started
1. Download and Install Ignite

Download the latest binary distribution from the Apache Ignite website and extract the resulting .zip
file to a location of your choice:

$ unzip apache-ignite-fabric-1.7.0-bin.zip
$ cd apache-ignite-fabric-1.7.0-bin

2. Set Environment Variable (this step is optional)
Set IGNITE_HOME environment variable to point to the installation folder and make sure there is no
trailing / in the path. On my Mac, I have set this environment variable in .bash_profile file, like
so:

export IGNITE_HOME=<path-to-ignite-installation-folder>

3. Start Ignite Cluster
Start a node using bin/ignite.sh command and specify an example configuration file provided
in the Ignite installation:

$ bin/ignite.sh examples/config/example-ignite.xml
If the installation was successful, your Ignite node startup message should look like this:

https://ignite.apache.org/download.cgi
https://ignite.apache.org/index.html

Getting started

Getting started
I have started one more node in another terminal, by repeating the above command (in step 3).

I now have an Ignite cluster setup with two server nodes running. You can start as many nodes
as you like. Ignite will automatically discover all the nodes.

Getting started
4. Add Ignite Dependency (only if you are using Maven)

Add the following Ignite dependencies in your project’s pom.xml file:

<dependency>
 <groupid>org.apache.ignite</groupid>
 <artifactid>ignite-core</artifactid>
 <version>1.5.0-b1</version>
</dependency>

<dependency>

 <groupid>org.apache.ignite</groupid>
 <artifactid>ignite-spring</artifactid>
 <version>1.5.0-b1</version>
</dependency>

Introduction to Maven: https://maven.apache.org/guides/getting-started/
maven-in-five-minutes.html

https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

“Hello world” Example
Here is a sample HelloWord.java file that prints ‘Hello World’ on all the nodes in the cluster.

import org.apache.ignite.Ignite;
import org.apache.ignite.IgniteCache;
import org.apache.ignite.IgniteException;
import org.apache.ignite.Ignition;

public class HelloWorld {
 public static void main(String[] args) throws IgniteException {
 try (Ignite ignite = Ignition.start("examples/config/example-ignite.xml"))
{
 // Put values in cache.
 IgniteCache<Integer, String> cache = ignite.getOrCreateCache("myCache");

 cache.put(1, "Hello");
 cache.put(2, "World!");

 // Get values from cache and
 // broadcast 'Hello World' on all the nodes in the cluster.
 ignite.compute().broadcast(() -> {
 String hello = cache.get(1);
 String world = cache.get(2);

 System.out.println(hello + " " + world);
 });
 }
 }
}

“Hello world” Example

“Hello world” Example

Demo!

Word Count Example
In this example we will stream text into Ignite and count each
individual word. We will also issue periodic SQL queries into
the stream to query top 10 most popular words. 

The example will work as follows:
1 We will setup up a cache to hold the words and their counts.
2 We will setup a 5 second sliding window to keep the word

counts only for last 5 seconds.
 3 StreamWords program will stream text data into Ignite.
 4 QueryWords program will query top 10 words out of the

stream.

Cache Configuration
We define a CacheConfig class which will provide configuration to be used from both programs,
StreamWords and QueryWords. The cache will use words as keys, and counts for words as values.
Note that in this example we use a sliding window of 5 seconds for our cache. This means that words will
disappear from cache after 5 seconds since they were first entered into cache.

public class CacheConfig {
 public static CacheConfiguration<String, Long> wordCache() {
 CacheConfiguration<String, Long> cfg = new CacheConfiguration<>("words");

 // Index the words and their counts,
 // so we can use them for fast SQL querying.
 cfg.setIndexedTypes(String.class, Long.class);

 // Sliding window of 5 seconds.
 cfg.setExpiryPolicyFactory(FactoryBuilder.factoryOf(
 new CreatedExpiryPolicy(new Duration(SECONDS, 5))));

 return cfg;
 }
}

StreamWords class

We define a StreamWords class which will be responsible to
continuously read words form a local text file ("alice-in-wonderland.txt" in
our case) and stream them into Ignite "words" cache.

1 We set allowOverwrite flag to true to make sure that existing
counts can be updated.

2 We configure a StreamTransformer which takes currently cache
count for a word and increments it by 1.

StreamWords class
public class StreamWords {
 public static void main(String[] args) throws Exception{
 // Mark this cluster member as client.
 Ignition.setClientMode(true);

 try (Ignite ignite = Ignition.start()) {
 IgniteCache<String, Long> stmCache =
 ignite.getOrCreateCache(CacheConfig.wordCache());

 // Create a streamer to stream words into
 the cache.

 try (IgniteDataStreamer<String, Long> stmr =
 ignite.dataStreamer(stmCache.getName())) {
 // Allow data updates.
 stmr.allowOverwrite(true);

 // Configure data transformation to count
 instances of the same word.
 stmr.receiver(StreamTransformer.from((e, arg) ->
{
 // Get current count.
 Long val = e.getValue();

 // Increment current count by 1.
 e.setValue(val == null ? 1L : val + 1);

 return null;
 }));

 // Stream words from "alice-in-wonderland"
book.
 while (true) {

 Path path =
Paths.get(StreamWords.class.getResource("alice-
in-wonderland.txt").toURI());

 // Read words from a text file.
 try (Stream<String> lines =
 Files.lines(path)) {
 lines.forEach(line -> {
 Stream<String> words =
 Stream.of(line.split(" "));

 // Stream words into Ignite streamer.
 words.forEach(word -> {
 if (!word.trim().isEmpty())
 stmr.addData(word, 1L);
 });
 });
 }
 }
 }
 }
 }
}

QueryWords class

We define a QueryWords class which will periodically query word counts form the
cache.

1 We use standard SQL to query the counts.
2 Ignite SQL treats Java classes as SQL tables. Since our counts are stored as

simple Long type, the SQL query below queries Long table.
3 Ignite always stores cache keys and values as _key and _val fields, so we use

this syntax in our SQL query.

QueryWords class
public class QueryWords {
 public static void main(String[] args) throws Exception {
 // Mark this cluster member as client.
 Ignition.setClientMode(true);

 try (Ignite ignite = Ignition.start()) {
 IgniteCache<String, Long> stmCache = ignite.getOrCreateCache(CacheConfig.wordCache());

 // Select top 10 words.
 SqlFieldsQuery top10Qry = new SqlFieldsQuery(
 "select _key, _val from Long order by _val desc limit 10");

 // Query top 10 popular words every 5 seconds.
 while (true) {
 // Execute queries.
 List<List<?>> top10 = stmCache.query(top10Qry).getAll();

 // Print top 10 words.
 ExamplesUtils.printQueryResults(top10);

 Thread.sleep(5000);
 }
 }
 }
}

Coursework Specification
• Find top ten most accessed Wikipedia pages from page access

log files

• Part A: Sequential, non-distributed 
Using Ignite stream log files and process them in a cache, applying
a 1-second sliding window

• Part B: Concurrently, distributed  
Using Ignite stream these log files, and process them concurrently.
Determine global top ten most popular pages on Wikibooks

• Details in hand-out, which will be uploaded to the course website
shortly

• Submission date: 4pm on Thursday, November 17, 2016

