Distributed Systems

Coloring and MIS

Rik Sarkar

University of Edinburgh
Fall 2015

Coloring a graph

- Assign a color to each vertex such that - Neighboring vertices always have different colors
- Easy with n colors
- Problem is harder with fewer colors

Application of coloring

- Suppose there are restrictions such that certain pairs of nodes must not operate (or access a resource) at the same time
- A coloring gives us sets of nodes that can operate at the same time

Example

- Suppose we have a wireless network
- Nearby nodes should not transmit at the same frequency (channel) at the same time
- We can construct a graph where nodes within range of each-other are connected by an edge
- A coloring of this graph is an assignment of communication channels to nodes
- Such that they will not interfere

Example

- Suppose we have a wireless network
- Nearby nodes should not transmit at the same frequency (channel) at the same time
- We can construct a graph where nodes within range of each-other are connected by an edge
- A coloring of this graph is an assignment of communication channels to nodes
- Such that they will not interfere
- Alternatively, using time division access
- A coloring is assignment of time slots

Independent set (IS)

- A subset of vertices that can have the same color
- No two vertices are adjacent
- In a coloring, vertices of each color form an IS

Maximum independent set (maxIS)

- Independent set of largest possible size
- NP-hard: polynomial time algorithm unlikely

Maximal IS (MIS)

- Independent set such that
- No other vertex can be added to the set
- MIS can have very few vertices compared to MaxIS

MIS algorithm (synchronous)

- Each vertex has states
- Undecided (initial)
- Decided to enter MIS
- Decided not to enter MIS
- Algorithm (repeated at each node until a decision (enter or not enter)):
- If a neighbor has decided to enter MIS
- Decide not to enter
- If some neighbors are undecided and one or more undecided neighbor has higher id
- Stay undecided
- If some neighbors are undecided and none has higher id
- Decide to enter MIS

MIS algorithm

- Time complexity: O(n)
- When nodes are in a chain, sorted by id

MIS

- We want something faster that $\mathrm{O}(\mathrm{n})$

Fast-MIS (randomized)

- $d(v)$ is degree of v
- Each v marks itself with probability 1/2d(v)
- If no higher degree neighbor is marked
- v joins MIS
- Else v un-marks itself
- Remove all nodes that joined MIS and their neighbors

Fast-MIS

- Run time: $\mathrm{O}(\log \mathrm{n})$
- Proof : somewhat long.
- If you want to learn more, see:
- Alon et al. 1986 : A fast and simple randomized parallel algorithm for the maximal independent set problem
- Slides: http://www.net.t-labs.tu-berlin.de/~stefan/ netalg13-6-MIS.pdf

