
Distributed Systems 
 

Predicates and Mutual Exclusion

Björn Franke 
2016/2017

University of Edinburgh

Distributed Systems, Edinburgh,
2016/2017

Non-stable Predicates

• Where snapshots are not useful
• Non-stable predicates, e.g.
–Was this file opened at some time?
–Was x1-x2 < δ ever?
–Was the antenna accessed for two

transmissions at the same time?

– Non-stable predicates may have happened,
but then system state changes..

2

Distributed Systems, Edinburgh,
2016/2017

Non-stable Predicates

• Possibly B:
– B could have happened

• Definitely B:
– B definitely happened

• How can we check for definitely B and
possibly B?

3

Distributed Systems, Edinburgh,
2016/2017

Collecting Global States

• Each process notes its state & vector
timestamp
– Sends it to a server for recording
– Note: we do not need to save every time a

state changes: only when it affects the
predicates to be checked
• Assuming we know what predicates will be checked

• The server looks at these and tries to
figure out if predicate B was possibly or
definitely true

4

Distributed Systems, Edinburgh,
2016/2017

Possible States

• Server checks for possible states:
consistent cuts for B: x=y

5

p1

p2

2,0 3,0

0,1 2,2 2,3

4,41,0

2,4
X = 1 X = 5X = 3

Y = 5 Y = 5

X = 5

Y = 3 Y = 4 Y = 7

Distributed Systems, Edinburgh,
2016/2017

Possible States

• Server checks for possible states:
consistent cuts for B: x=y

6

p1

p2

1,0 2,0

1,1 1,2

4,2

X = 1 X = 5X = 3

Y = 1 Y = 5

X = 9

Y = 3 Y = 7

S0,0

S1,0

0,0

0,0

S2,0

S2,1

S2,2

3,0

S3,0

S3,1

S3,2

1,3

S3,3

S4,3

S2,3

X = 5

Distributed Systems, Edinburgh,
2016/2017

 Lattice of global states 
(consistent cuts)

• Any downward path
from Initial state to
final state is a valid
execution
– A possible sequence

of states that could
have existed

7

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2016/2017

 Lattice of global states 
(consistent cuts)

• Possibly B:
– B occurs on at least

one downward path

• Definitely B
– B occurs on all

downward paths

8

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2016/2017

 Lattice of global states
(consistent cuts)

• How do you
compute possibly
and definitely B?

9

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2016/2017

 Lattice of global states 
(consistent cuts)

• Possibly B:
– B occurs on at least

one downward path

• Do a BFS from start
state
– If there is one state

with B true, then
possibly B is true

10

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2016/2017

 Lattice of global states  
(consistent cuts)

• Definitely B
– B occurs on all

downward paths

• Do a BFS from start
state
– Do not visit nodes with

B: true
– If BFS reaches final state

and B is false in final
state then Definitely B is
false

– Else Definitely B is true

11

Time

S0,0

S1,0

S2,0

S2,1

S2,2

S3,0

S3,1

S3,2

S3,3

S4,3

level

0

1

2

5

3

4

6

7

S2,3

Distributed Systems, Edinburgh,
2016/2017

What is the computational complexity?

12

Distributed Systems, Edinburgh,
2016/2017

What is the computational complexity?

• Possibly exponential in number of
processes

• Problem is NP-complete

• Observation: more messages reduces
complexity!

13

Distributed Systems, Edinburgh,
2016/2017

Mutual exclusion

• Multiple processes should not use the same
resource at once
– Eg. Print to the same printer
– Transmit/receive using the same antenna
– Update the same database table

• Critical section (CS): the part of code that
uses the restricted resource

• Mutual exclusion : restrict access to critical
section to at most one process at one time

14

Ref: CDK, VG

Distributed Systems, Edinburgh,
2016/2017

Properties in ME

• Safety: Two processes should not use
critical section simultaneously

15

Distributed Systems, Edinburgh,
2016/2017

Properties in ME

• Safety: Two processes should not use
critical section simultaneously

• Liveness: Every live request for CS is
eventually granted

• Fairness: Requests must be granted in the
order they are made (wrt logical time)

16

Distributed Systems, Edinburgh,
2016/2017

Distributed vs Centralized Mutex

• On a single computer, OS can manage
access to a shared variable

• On a distributed system, we have to use
messages

17

Distributed Systems, Edinburgh,
2016/2017

Assumption

• There is only one resource in question

• In reality there can be more, but for now,
let us focus on just one

• All channels are FIFO

18

Distributed Systems, Edinburgh,
2016/2017

Central server algorithm

• There is a server or coordinator
– Holds a “token” for the resource

• Other processes send token request to the
server

• Server puts incoming requests in a queue
• Sends token to first process in queue
• Process returns token when done
• Server sends to next process

19

Distributed Systems, Edinburgh,
2016/2017

Central server algorithm

• What are the advantages and
disadvantages?

20

Distributed Systems, Edinburgh,
2016/2017

Central server algorithm

• Advantages
– Simple
– Constant complexity per message

• Disadvantages
– Central point of failure
– Central bottleneck
– Does not preserve order in asynchronous

systems
– Server must be selected/elected

21

Distributed Systems, Edinburgh,
2016/2017

Token ring algorithm

• Processes are arranged
in a ring

• The token is
continuously passed in
one direction

• A process on receiving
token:
– If it does not need CS,

passes token to next one
– If it needs CS, it holds

token, executes CS and
then passes token

22

Distributed Systems, Edinburgh,
2016/2017

Token ring algorithm

• Observe:
– Processes do not need

to be in an actual ring
– Each process just

needs to know the
next process and have
a method to send it a
message

23

Distributed Systems, Edinburgh,
2016/2017

Token ring

• Problems:

24

Distributed Systems, Edinburgh,
2016/2017

Token ring

• Problems:
– Not in-order
– Long delay in getting token
• Upto n-1

– One failure breaks the ring
– Passes token around even when there are no

requests

25

Distributed Systems, Edinburgh,
2016/2017

Lamport’s algorithm

• Every node i has a queue qi of requests
– Keeps requests sorted by logical timestamps

• Process i sends CS request:
– Timestamped REQUEST (tsi, i) to all processes
– Enters (tsi,i) to its own queue qi

• Process j receives REQUEST (tsi,i)
– Send timestamped REPLY to i
– Enter (tsi,i) to qj

26

Distributed Systems, Edinburgh,
2016/2017

Lamport’s Algorithm

• Process i enters CS if
– (tsi,i) is at head of its own queue
– It has received REPLY from all processes

• To release CS
– Process i sends RELEASE message to all

• On receiving RELEASE, process j
– Removes (tsi,i) from qj

27

Distributed Systems, Edinburgh,
2016/2017

Observations

• Requests granted in order consistent with
happened before

• 3(n-1) messages per CS

28

Distributed Systems, Edinburgh,
2016/2017

Ricart and Agrawala’s algorithm

• Main modification:
– Node j does not send a REPLY if j has a

request with timestamp lower than i’s
request

– j simply delays the REPLY until its RELEASE
message

29

Distributed Systems, Edinburgh,
2016/2017

Ricart-Agrawala’s algorithm

• Process i sends CS request:
– Timestamped REQUEST (tsi, i) to all processes

• Process j receives REQUEST (tsi,i)
– If j has no outstanding request of its own

earlier than (tsi,i) or is not executing CS
• Send timestamped REPLY to i
• Enter (tsi,i) to qj

– Else keep (tsi,i) pending

30

Distributed Systems, Edinburgh,
2016/2017

Ricart-Agrawala’s algorithm

• Process i enters CS if
– It has received REPLY from all processes

• To release CS
– Sends REPLY message to pending processes

31

Distributed Systems, Edinburgh,
2016/2017

Ricart-Agrawala’s algorithm

• Has no queues at processes
• The queue is maintained distributedly

across all processes through timestamps
and delayed replies

• Uses 2(n-1) messages

32

Ricart-Agrawala’s algorithm

33

Distributed Systems, Edinburgh,
2016/2017

Maekawa’s Quorum algorithm

• Idea: instead of getting permission from all
processes, get permission from only a subset
of processes

• For each process i, we have a voting set
(quorum) Vi
– For all i,j: Vi ∩ Vj ≠ ∅

– For all i, i ∈ Vi

– Voting sets are same size, each node is part of
same number of sets

34

Distributed Systems, Edinburgh,
2016/2017

Maekawa’s Quorum algorithm

• Idea:
– Arrange nodes in a square grid
– Quorum for node i:
• All nodes in same row or same column as i

– Any two quorums intersect

• Complexity?

35

Maekawa’s Quorum algorithm

36

Let processes compete for votes. If a process has received more votes
than any other process, it can enter the CS. If it does not have enough
votes, it waits until the process in the CS is done and releases its votes.
Quorums have the property that any two groups have a non-empty
intersection.Simple majorities are quorums. Any 2 sets whose sizes are
simple majorities must have at least one element in common.

Maekawa’s Quorum algorithm

37

Grid quorum: arrange nodes in
logical grid (square). A quorum is all
of a row and all of a column.

Distributed Systems, Edinburgh,
2016/2017

• Complexity per CS: O(√n)

38

Resources

39

• Non-stable Predicates
• Reading: CDK 11.5 Global states

• Mutual exclusion
• Reading: CDK 15.2 Distributed mutual exclusion
• https://www.youtube.com/watch?v=r7SJOhGF4Nc
• https://www.youtube.com/watch?v=yBnRO2gGock
• https://www.risc.jku.at/software/daj/

https://www.youtube.com/watch?v=r7SJOhGF4Nc
https://www.youtube.com/watch?v=yBnRO2gGock

