
Distributed	Systems	
	

Failure	detec2on	&	Leader	Elec2on	
Rik	Sarkar	

	
University	of	Edinburgh	

Fall	2016	

Failures	
•  How	do	we	know	that	something	has	failed?	
•  Let’s	see	what	we	mean	by	failed:	

•  Models	of	failure:	
1.  Assume	no	failures	
2.  Crash	failures:	Process	may	fail/crash	
3.  Message	failures:	Messages	may	get	dropped	
4.  Link	failures:	a	communica2on	link	stops	working	
5.  Some	combina2ons	of	2,3,4	
6.  More	complex	models	can	have	recovery	from	failures	
7.  Arbitrary	failures:	computa2on/communica2on	may	be	

erroneous	

Distributed	Systems,	Edinburgh,	2016	 2	

Failure	detectors	

•  Detec2on	of	a	crashed	process	
–  (not	one	working	erroneously)	

•  A	major	challenge	in	distributed	systems	
•  A	failure	detector	is	a	process	that	responds	to	
ques2ons	asking	whether	a	given	process	has	
failed	
– A	failure	detector	is	not	necessarily	accurate	

Distributed	Systems,	Edinburgh,	2016	 3	

Failure	detectors	
•  Reliable	failure	detectors	

–  Replies	with	“working”	or	“failed”	

•  Difficulty:	
–  Detec2ng	something	is	working	is	easier:	if	they	respond	to	a	message,	they	

are	working	
–  Detec2ng	failure	is	harder:	if	they	don’t	respond	to	the	message,	the	message	

may	hev	been	lost/delayed,	may	be	the	process	is	busy,	etc..	

•  Unreliable	failure	detector	
–  Replies	with	“suspected	(failed)”	or	“unsuspected”	
–  That	is,	does	not	try	to	give	a	confirmed	answer	

•  We	would	ideally	like	reliable	detectors,	but	unreliable	ones	(that	say	give	
“maybe”	answers)	could	be	more	realis2c	

Distributed	Systems,	Edinburgh,	2016	 4	

Simple	example	

•  Suppose	we	know	all	messages	are	delivered	
within	D	seconds	

•  Then	we	can	require	each	process	to	send	a	
message	every	T	seconds	to	the	failure	
detectors		

•  If	a	failure	detector	does	not	get	a	message	
from	process	p	in	T+D	seconds,	it	marks	p	as	
“suspected”	or	“failed”	

Distributed	Systems,	Edinburgh,	2016	 5	

Simple	example	

•  Suppose	we	assume	all	messages	are	delivered	
within	D	seconds	

•  Then	we	can	require	each	process	to	send	a	
message	every	T	seconds	to	the	failure	detectors		

•  If	a	failure	detector	does	not	get	a	message	from	
process	p	in	T+D	seconds,	it	marks	p	as	
“suspected”	or	“failed”	(depending	on	type	of	
detector)	

Distributed	Systems,	Edinburgh,	2016	 6	

Synchronous	vs	asynchronous	
•  In	a	synchronous	system	there	is	a	bound	on	message	
delivery	2me	(and	clock	dria)	

•  So	this	simple	method	gives	a	reliable	failure	detector	

•  In	fact,	it	is	possible	to	implement	this	simply	as	a	
func2on:	
–  Send	a	message	to	process	p,	wait	for	2D	+	ε	2me	
–  A	dedicated	detector	process	is	not	necessary	

•  In	Asynchronous	systems,	things	are	much	harder	

Distributed	Systems,	Edinburgh,	2016	 7	

Simple	failure	detector	

•  If	we	choose	T	or	D	too	large,	then	it	will	take	
a	long	2me	for	failure	to	be	detected	

•  If	we	select	T	too	small,	it	increases	
communica2on	costs	and	puts	too	much	
burden	on	processes	

•  If	we	select	D	too	small,	then	working	
processes	may	get	labeled	as	failed/suspected	

Distributed	Systems,	Edinburgh,	2016	 8	

Assump2ons	and	real	world	

•  In	reality,	both	synchronous	and	
asynchronous	are	a	too	rigid	

•  Real	systems,	are	fast,	but	some2mes	
messages	can	take	a	longer	than	usual	
– But	not	indefinitely	long	

•  Messages	usually	get	delivered,	but	
some2mes	not..	

Distributed	Systems,	Edinburgh,	2016	 9	

Some	more	realis2c	failure	detectors	

•  Have	2	values	of	D:	D1,	D2	
– Mark	processes	as	working,	suspected,	failed	

•  Use	probabili2es	
–  Instead	of	synchronous/asynchronous,	model	
delivery	2me	as	probability	distribu2on	

– We	can	learn	the	probability	distribu2on	of	
message	delivery	2me,	and	accordingly	ex2mate	
the	probability	of	failure	

Distributed	Systems,	Edinburgh,	2016	 10	

Using	bayes	rule	
•  a=probability	that	a	process	fails	within	2me	T	
•  b=probability	a	message	is	not	received	in	T+D	

•  So,	when	we	do	not	receive	a	message	from	a	process	
we	want	to	es2mate	P(a|b)	
–  Probability	of	a,	given	that	b	has	occurred	

Distributed	Systems,	Edinburgh,	2016	 11	

P(a | b) = P(b | a)P(a)
P(b)

If	process	has	failed,	i.e.	a	is	true,	then	of	course	message	will	not		
be	received!	i.e.	P(b|a)	=	1.	Therefore:	

P(a | b) = P(a)
P(b)

Leader	of	a	computa2on	

•  Many	distributed	computa2ons	need	a	
coordina2ng	or	server	process	
– E.g.	Central	server	for	mutual	exclusion	
–  Ini2a2ng	a	distributed	computa2on	
– Compu2ng	the	sum/max	using	aggrega2on	tree	

•  We	may	need	to	elect	a	leader	at	the	start	of	
computa2on	

•  We	may	need	to	elect	a	new	leader	if	the	
current	leader	of	the	computa2on	fails	

Distributed	Systems,	Edinburgh,	2016	 12	

The	Dis2nguished	leader	

•  The	leader	must	have	a	special	property	that	
other	nodes	do	not	have	

•  If	all	nodes	are	exactly	iden2cal	in	every	way	
then	there	is	no	algorithm	to	iden2fy	one	as	
leader	

•  Our	policy:	
– The	node	with	highest	iden2fier	is	leader	

Distributed	Systems,	Edinburgh,	2016	 13	

Ref:	NL	

Node	with	highest	iden2fier	
•  If	all	nodes	know	the	highest	iden2fier	(say	n),	we	do	not	

need	an	elec2on	
–  Everyone	assumes	n	is	leader	
–  n	starts	opera2ng	as	leader	

•  But	what	if	n	fails?	We	cannot	assume	n-1	is	leader,	since	
n-1	may	have	failed	too!	Or	may	be	there	never	was	
process	n-1	

•  Our	policy:	
–  The	node	with	highest	iden2fier	and	s2ll	surviving	is	the	leader	

•  We	need	an	algorithm	that	finds	the	working	node	with	
highest	iden2fier	

Distributed	Systems,	Edinburgh,	2016	 14	

Strategy	1:	Use	aggrega2on	tree	

Distributed	Systems,	Edinburgh,	2016	 15	

5	

2	 8	

7	

3	

2	

r	=	4	

2	

5	

7	

8	 3	

8	

•  Suppose	node	r	detects	that	leader	has	
failed,	and	ini2ates	leader	elec2on	

•  Node	r	creates	a	BFS	tree	

•  Asks	for	max	node	id	to	be	computed	via	
aggrega2on	
–  Each	node	receives	id	values	from	children	
–  Each	node	computes	max	of	own	id	and	

received	values,	and	forwards	to	parent	

•  Needs	a	tree	construc2on	
•  If	n	nodes	start	elec2on,	will	need	n	trees	

–  O(n2)communica2on	
–  O(n)	storage	per	node	

Strategy	1:	Use	aggrega2on	tree	
•  Suppose	node	r	detects	that	leader	has	

failed,	and	ini2ates	leader	elec2on	

•  Node	r	creates	a	BFS	tree	

•  Asks	for	max	node	id	to	be	computed	via	
aggrega2on	
–  Each	node	receives	id	values	from	children	
–  Each	node	computes	max	of	own	id	and	

received	values,	and	forwards	to	parent	

•  Needs	a	tree	construc2on	
•  If	n	nodes	start	elec2on,	will	need	n	trees	

–  O(n2)communica2on	
–  O(n)	storage	per	node	

Distributed	Systems,	Edinburgh,	2016	 16	

5	

2	 8	

7	

3	

2	

r	=	4	

2	

5	

7	

8	 3	

8	

Strategy	2:	Use	a	ring	
•  Suppose	the	network	is	a	
ring	
– We	assume	that	each	node	
has	2	pointers	to	nodes	it	
knows	about:	
•  Next	
•  Previous	
•  (like	a	circular	doubly	linked	
list)	

–  The	actual	network	may	not	
be	a	ring	

–  This	can	be	an	overlay	

Distributed	Systems,	Edinburgh,	2016	 17	

6	

2	

4	
5	

3	

8	

Strategy	2:	Use	a	ring	

•  Basic	idea:	
– Suppose	6	starts	elec2on	
– Send	“6”	to	6.next,		i.e.	2	
– 2	takes	max(2,	6),	send	to	
2.next	

– 8	takes	max(8,6),	sends	to	
8.next		

– etc	

Distributed	Systems,	Edinburgh,	2016	 18	

6	

2	

4	
5	

3	

8	

next	

previous	

6	

6	

8	

8	

8	

Strategy	2:	Use	a	ring	

•  The	value	“8”	goes	around	the	
ring	and	comes	back	to	8	

•  Then	8	knows	that	“8”	is	the	
highest	id	
–  Since	if	there	was	a	higher	id,	
that	would	have	stopped	8		

•  8	declares	itself	the	leader:	
sends	a	message	around	the	
ring	

	
Distributed	Systems,	Edinburgh,	2016	 19	

6	

2	

4	
5	

3	

8	

next	

previous	

6	

6	

8	

8	

8	

8	

Strategy	2:	Use	a	ring	

•  The	problem:	What	if	
mul2ple	nodes	start	leader	
elec2on	at	the	same	2me?	

•  We	need	to	adapt	
algorithm	slightly	so	that	it	
can	work	whenever	a	
leader	is	needed,	and	
works	for	mul2ple	leader	

	
Distributed	Systems,	Edinburgh,	2016	 20	

6	

2	

4	
5	

3	

8	

next	

previous	

6	

6	

8	

8	

8	

8	

Strategy	2:	Use	a	ring		
(Algorithm	by	chang	and	roberts)	

•  Every	node	has	a	default	
state:	non-par3cipant	

•  Star2ng	node	sets	state	
to	par3cipant	and	sends	
elec3on	message	with	id	
to	next	

	
Distributed	Systems,	Edinburgh,	2016	 21	

6	

2	

4	
5	

3	

8	

next	

previous	

6	

6	

8	

8	

8	

8	

Strategy	2:	Use	a	ring		
(Algorithm	by	chang	and	roberts)	

•  If	node	p	receives	elec3on	
message	m	

•  If	p	is	non-partcipant:		
–  send	max(m.id,	p.id)	to	p.next	
–  Set	state	to	par2cipant	

•  If	p	is	par2cipant:	
–  If	m.id	>	p.id:	

•  Send	m.id	to	p.next	
–  If	m.id	<	p.id:	

•  do	nothing	

	

Distributed	Systems,	Edinburgh,	2016	 22	

6	

2	

4	
5	

3	

8	

next	

previous	

6	

6	

8	

8	

8	

8	

Strategy	2:	Use	a	ring		
(Algorithm	by	chang	and	roberts)	

•  If	node	p	receives	elec3on	message	m	with		
m.id	=	p.id	

•  P	declares	itself	leader	
– Sets	p.leader	=	p.id	
– Sends	leader	message	with	p.id	to	p.next	
– Any	other	node	q	receiving	the	leader	message	
•  Sets	q.leader	=	p.id	
•  Forwards	leader	message	to	q.next	

	

Distributed	Systems,	Edinburgh,	2016	 23	

Strategy	2:	Use	a	ring		
(Algorithm	by	chang	and	roberts)	

•  Works	in	an	asynchronous	system	
•  Assuming	nothing	fails	while	the	algorithm	is	execu2ng	

•  Message	complexity	O(n^2)	
– When	does	this	occur?	
–  (hint:	all	nodes	start	elec2on,	and	many	messages	traverse	
a	long	distance)	

•  What	is	the	2me	complexity?	
•  What	is	the	storage	complexity?	

Distributed	Systems,	Edinburgh,	2016	 24	

Strategy	3:	Use	a	ring	–	smartly	
(Hirschberg	Sinclair)	

•  Assume	all	nodes	want	to	know	the	leader	
•  k-neighborhood	of	node	p		
– The	set	of	all	nodes	within	distance	k	of	p	

•  How	does	p	send	a	message	to	distance	k?	
– Message	has	a	“2me	to	live	variable”	
– Each	node	decrements	m.pl	on	receiving	
–  If	m.pl=0,	don’t	forward	any	more	

Distributed	Systems,	Edinburgh,	2016	 25	

Strategy	3:	Use	a	ring	–	smartly	
(Hirschberg	Sinclair)	

•  Basic	idea:	
– Check	growing	regions	around	yourself	for	
someone	with	larger	id	

Distributed	Systems,	Edinburgh,	2016	 26	

Strategy	3:	Use	a	ring	–	smartly	
(Hirschberg	Sinclair)	

•  Algorithm	operates	in	phases	
•  In	phase	0,	node	p	sends	elec2on	message	m	to	
both	p.next	and	p.previous	with:	
– m.id	=	p.id	and	pl	=	1	

•  Suppose	q	receives	this	message	
–  Sets	m.pl=0	
–  If	q.id	>	m.id:	

•  Do	nothing	
–  If	q.id	<	m.id:	

•  Return	message	to	p	

Distributed	Systems,	Edinburgh,	2016	 27	

Strategy	3:	Use	a	ring	–	smartly	
(Hirschberg	Sinclair)	

•  Algorithm	operates	in	phases	
•  In	phase	0,	node	p	sends	elec2on	message	m	to	both	

p.next	and	p.previous	with:	
–  m.id	=	p.id	and	pl	=	1	

•  Suppose	q	receives	this	message	
–  Sets	m.pl=0	
–  If	q.id	>	m.id:	

•  Do	nothing	
–  If	q.id	<	m.id:	

•  Return	message	to	p	
•  If	p	gets	back	both	message,	it	decides	itself	leader	of	its	1-

neighborhood,	and	proceeds	to	next	phase	

Distributed	Systems,	Edinburgh,	2016	 28	

Strategy	3:	Use	a	ring	–	smartly	
(Hirschberg	Sinclair)	

•  If	p	is	In	phase	i,	node	p	sends	elec2on	message	m	to	p.next	
and	p.previous	with:	
–  m.id	=	p.id,	and	m.pl	=	2i	

•  A	node	q	on	receiving	the	message	(from	next/previous)	
–  If	m.pl=0:	forward	suitably	to	previous/next	
–  Sets	m.pl=m.pl-1	
–  If	q.id	>	m.id:	

•  Do	nothing	
–  Else:	

•  If	m.pl	=	0:	return	to	sending	process	
•  Else	forward	to	suitably	to	previous/next	

•  If	p	gets	both	message	back,	it	is	the	leader	of	its	2i	
neighborhood,	and	proceeds	to	phase	i+1	

Distributed	Systems,	Edinburgh,	2016	 29	

Strategy	3:	Use	a	ring	–	smartly	
(Hirschberg	Sinclair)	

•  When	2i	>=	n/2	
– Only	1	process	survives:	Leader	

•  Number	of	phases:	O(log	n)	

•  What	is	the	message	complexity?	

Distributed	Systems,	Edinburgh,	2016	 30	

Strategy	3:	Use	a	ring	–	smartly	
(Hirschberg	Sinclair)	

In	phase	i		
•  At	most	one	node	ini2ates	message	in	any	
sequence	of	2i-1	nodes	

•  So,	n/2i-1	candidates	
–  Each	sends	2	messages,	going	at	most	2i	distance,	and	
returning:	2*2*2i	messages		

•  O(n)	messages	in	phase	i	
	
There	are	O(log	n)	phases	
•  Total	of	O(n	log	n)	messages	

31	Distributed	Systems,	Edinburgh,	2016	

Strategy	3:	Use	a	ring	–	smartly	
(Hirschberg	Sinclair)	

•  Assume	synchronous	opera2on	
•  Assume	nodes	do	not	fail	during	algorithm	run	

•  What	is	2me	complexity?	
•  What	is	storage	complexity?	

32	Distributed	Systems,	Edinburgh,	2016	

Strategy	4:	Bully	Algorithm	
•  Assume:		

–  Each	node	knows	the	id	of	all	nodes	in	the	system	(some	may	have	failed)	
–  Synchronous	opera2on	

•  Node	p	decides	to	ini2ate	elec2on	
•  p	sends	elec2on	message	to	all	nodes	with	 	id	>	p.id		
•  If	p	does	not	hear	“I	am	alive	message”	from	any	node,	p	broadcasts	a	

message	declaring	itself	as	leader	
•  Any	working	node	q	that	receives	elec2on	message	from	p,	replies	with	

own	id	and	“I	am	alive”	message	
–  And	starts	an	elec2on	(unless	it	is	already	in	the	process	of	an	elec2on)	

•  Any	node	q	that	hears	a	lower	id	node	being	declared	leader,	starts	a	new	
elec2on	

Distributed	Systems,	Edinburgh,	2016	 33	

Ref:	CDK	

Strategy	4:	Bully	Algorithm	

•  Assume:		
–  Each	node	knows	the	id	of	all	nodes	in	the	system	
(some	may	have	failed)	

–  Synchronous	opera2on	

•  Works	even	when	processes	fail	
•  Works	when	(some)	message	deliveries	fail.	

•  What	are	the	storage	and	message	complexi2es?	

Distributed	Systems,	Edinburgh,	2016	 34	

