Distributed Systems

Time, Clocks, and Ordering of Events
Bjorn Franke

University of Edinburgh
2015/2016



Today

 Last lecture: Basic Algorithms

* Today:
 Time, clocks, NTP
— Ref: CDK

« Causality, ordering, logical clocks:
— Ref: VG, CDK



Time

* Ordering of events are important:
— Which happened first

* Need synchronisation between sender and
receiver

» Coordination of joint activity etc..



UTC

« UTC

— Coordinated universal time

— Time maintained for civil use
(on atomic clock)

— Kept within 0.9 seconds of exact mean time
for Greenwich



Clocks

* Piezoelectric effect:

— Squeeze a quartz crystal.:
generates electric field

— Apply electric field: crystal bends

» Quartz crystal clock:
— Resonation like a tuning fork
— Accurate to parts per million
— Gain/lose %2 second per day



Challenges

Two clocks do not agree perfectly

Skew: The time difference between two clocks
Quartz oscillators vibrate at different rates
Drift: The difference in rates of two clocks

If we had two perfect clocks:
— Skew =0
— Drift =0



When we detect a clock has a skew

* Eg: it is 5 seconds behind
* Or 5 seconds ahead

* What can we do?



When we detect a clock has a skew

* Eg: it is 5 seconds behind
— We can advance it 5 seconds to correct

 Or 5 seconds ahead

— Pushing back 5 seconds is a bad idea
* Message was received before it was sent
* Document closed before it was saved etc..

— We want monotonicity: time always increases
— We want continuity: time doesn’t make jumps



When we detect a clock has a skew

* Eg: it is behind
— Run it faster until it catches up

* |t is ahead
— Run it slower until it catches up

* This does not guarantee correct clock in
future
— Need to check and adjust periodically



How clocks synchronise

e Obtain time from time server:

i ~ Request time )i i

Time : 00:05:20

Distributed Systems, Edinburgh, 2015

10



How clocks synchronise

« Obtain time from time server:

i ~ Request time )i i

. o Time : 00:05:20
* Time i1s inaccurate

— Delays in message transmission
— Delays due to processing time
— Server’s time may be inaccurate

Distributed Systems, Edinburgh, 2015

11



Christian’s algorithm

« Compensate for delays
— Request sent at T,

— Reply received at T,

server

T
. 2
Repl
Request/ \ PYY
>
To T,

— Assume delays are symmetric




Christian’s algorithm

Tnew = Tserver+ (T1 - TO)/2
Tserver
. >
Repl
Request/ \ PY
Z 5< >
To ?1

Distributed Systems, Edinburgh, 2015

13



Christian’s algorithm

se rver

Repl
ReQuest/ x PY
T —

new server

Example:

T, =5:05:08.100, T, = 5:05:9.500
Teorver= 3:05:9.100

T . = 5:05:09:800



Christian’s algorithm

o If minimum message transit time T_. is known
-« Range =T, - T,- 2T ..
« Accuracy of result: (T, - T,- 2T

Tserver
t
Req uest/ \
TO
<>

>
Reply

>
T1

/2

min)

Tmin min



Berkeley algorithm

* Assumes no machine has perfect time
» Takes average of participating computers
* Sync all clocks to average



Berkeley algorithm

One computer is elected as server (master)
— Others are slaves

Master polls each machine for time

Compute average

— Idea average will cancel out skews

Send each clock the offset by which it
needs to adjust time

— Sending time itself is susceptible to network
delays



Berkeley algorithm

* Fault tolerance
— Ignore readings of clocks with too large skews

— If master fails: run an election algorithm and
a slave becomes master



Network time protocol (NTP)

Enable clients to synchronise to UTC with
reasonable accuracy

Reliable:

— Redundant servers and paths

Scalable:
— Enable many clients to synchronise frequently

Security
— Authenticate sources



Network time protocol

 Servers in strata

» 1: directly connected to O & &
atomic, GPS etc clock
— May inter-communicate for

cross checks /\/ \/\

e 2: few microseconds of

level 1 etc - / él l}i\g\



Network time protocol

« Uses multiple rounds of
messages to get better ® ® 6
time

1
* Large number of servers ' /\/ \/\
* Uses an MST for inter- / /l/l\\k\

server sync

Distributed Systems, Edinburgh, 2015



Time and Synchronisation

* Important topic in distributed systems

* Many different methods
— Depending on systems, requirements...

* No perfect solution



Special Relativity

1

:é_’ Things that e can have
_cause/influence
SR | (GHT CONY

 Light cone:

/ AASTLGHTCONE N\
C Things)that could have

---_l._£at|sé"d/ influenced e

Distributed Systems, Edinburgh, 2015 23



GPS

Satellites: Have very accurate atomic clocks
Transmit signals: “satID, time T,,...”

Receivers measure distance:
— (T, - Ty)*c [c = speed of light]
— Distance from multiple satellites gives location

— Complex computation, taking into account possible
errors, clock drift and skew etc..

Needs relativistic computation

— Special relativity: Clocks on fast moving satellites run
slow (microseconds per day drift for satellites)

— General relativity: Clocks far from heavy bodies run fast
(microseconds per day)



