
Distributed	Systems	
	

Termina1on		Detec1on	
Rik	Sarkar	

	
University	of	Edinburgh	

Fall	2015	



Termina1on	detec1on	

•  How	do	we	know	when	a	distributed	
computa1on	has	ended?	

•  We	track	nodes	being	in	state	“idle”	Vs	“Ac1ve”	
•  Assume:	an	idle	node	becomes	ac1ve	only	on	
receiving	a	message	from	some	other	node.	
–  (excep1on	:	the	ini1ator:	leader/server	etc..)	

	
•  Termina1on	is	all	nodes	being	idle	

Distributed	Systems,	Edinburgh,	2014	 2	

Ref:	Wiki,	VG	



Termina1on	detec1on	(weight	
throwing)	

•  We	suppose	that	the	computa1on	is	started	by	a	
process	s.		
–  This	means,	other	(idle)	processes	start	working	
(becomes	ac1ve)	aSer	receiving	message	from	s	or	
some	other	process	

–  They	have	no	other	way	to	know	that	a	computa1on	
is	in	progress	

•  s	wants	to	know	when	all	other	processes	have	
concluded	working	

•  S	starts	with		weight	=	1.0	
•  Other	processes	start	with	weight	=	0	

Distributed	Systems,	Edinburgh,	2014	 3	



Weight	throwing	

•  When	a	process	sends	a	message,	it	puts	part	
(say,	half)	of	its	weight	in	the	message.	

•  When	a	process	receives	a	message,	it	adds	
the	message	weight	to	its	own	weight.	

•  When	a	process	has	finished	compu1ng,	
(becomes	idle)	it	sends	its	current	weight	to	s	

•  When	s	has	weight=1.0,	it	knows	no	other	
process	is	ac1ve	

	
Distributed	Systems,	Edinburgh,	2014	 4	



Termina1on	detec1on	(weight	
throwing)	

•  Works	on	the	assump1on	that	no	message	is	
lost	
– Methods	like	TCP	give	good	guarantee	for	delivery	
– Many	other	distributed	algorithms	have	this	
assump1on	

– Useful	for	their	termina1on	detec1on	

•  Drawback:		
– What	if	there	are	many	messages?	
–  (Homework!)	

Distributed	Systems,	Edinburgh,	2014	 5	



Termina1on	detec1on	(Dijkstra-scholten)	

•  Maintains	a	tree	of	which	node	ini1ated	computa1on	at	which	
other	node	

•  Each	node	has	ac1ve	children	counter	(cc)	
•  When	node	x	sends	a	message	to	y		

–  x	increments	cc	
–  If	y	was	idle		

•  y	becomes	ac1ve	
•  y	remembers	x	as	the	parent	

–  If	y	was	already	ac1ve	
•  y	sends	ack	to	x	

•  When	x	receives	an	ack	
–  x	decrements	cc	

•  When	y	finishes	all	computa1on	and	is	idle	
–  And	has	cc	=	0	

•  y	sends	ack	to	parent	

Distributed	Systems,	Edinburgh,	2014	 6	



Termina1on	detec1on	(Dijkstra-scholten)	

•  How	do	you	describe	its	Message	complexity	?	

Distributed	Systems,	Edinburgh,	2014	 7	


