Distributed Systems

Basic Algorithms

Rik Sarkar

University of Edinburgh
2015/2016
Distributed Computation

- How to send messages to all nodes efficiently
- How to compute sums of values at all nodes efficiently
- Network as a graph
- Broadcasting messages
- Computing sums in a tree
- Computing trees in a network
- Communication complexity
Network as a graph

- Network is a graph: \(G = (V,E) \)
- Each vertex/node is a computer/process
- Each edge is communication link between 2 nodes
- Every node has a Unique identifier known to itself.
 - Often used 1, 2, 3, ... n
- Every node knows its neighbors – the nodes it can reach directly without needing other nodes to route
 - Edges incident on the vertex
 - For example, in LAN or WLAN, through listening to the broadcast medium
 - Or by explicitly asking: Everyone that receives this message, please report back
- But a node \textit{does not} know the rest of the network
Example: Unit disk graphs

• Suppose all nodes are wireless
• Each can communicate with nodes within distance r.
• Say, $r = 1$
• UDG is a model
• Not perfect
• In general, networks can be any graph
Directed graphs

• When A can send message to B, but B cannot send message to A
• For example, in wireless transmission, if B is in A’s range, but A is not in B’s range
Directed graphs

• When A can send message to B, but B cannot send message to A
• Or if protocol or technology limitations prevent B from communicating with A
Directed graphs

• Protocols more complex
• Needs more messages
Network as a graph

• Distance/cost between nodes p and q in the network
 – Number of edges on the shortest path between p and q (when all edges are same: unweighted)

• Sometimes, edges can be weighted
 – Each edge e = (a,b) has a weight \(w(e) \)
 – \(w(e) \) is the cost of using the communication link e (may be length e)
 – Distance/cost between p and q is total weight of edges on the path from p to q with least weight
Network as a graph

• Diameter
 – The maximum distance between 2 nodes in the network

• Radius
 – Half the diameter

• Spanning tree of a graph:
 – A subgraph which is a tree, and reaches all nodes of the graph
 – If network has n nodes
 • How many edges does a spanning tree have?
Computing sums in a tree

- Suppose root wants to know sum of values at all nodes
Computing sums in a tree

- Suppose root wants to know sum of values at all nodes
- It sends “compute” message to all children
- They forward the message to all their children (unless it is a leaf node)
- The values move upward from leaves
- Each node adds values from all children and its own value
- Sends it to its parent
Computing sums in a tree

• What can you compute other than sums?

• How many messages does it take?

• How much time does it take?
Communication complexity

• Used to represent communication cost for general scenarios
• Called Communication Complexity or Asymptotic communication complexity

• Use big oh notation: O
Big oh – upper bounds

• For a system of n nodes,
• Communication complexity \(c(n) \) is \(O(f(n)) \) means:
 – There are constants \(a \) and \(N \), such that:
 – For \(n > N \): \(c(n) < a \cdot f(n) \)

Allowing some initial irregularity, ‘\(c(n) \)’ is not bigger than a constant times ‘\(f(n) \)’

In the long run, \(c(n) \) does not grow faster than \(f(n) \)
Examples

• $3n = O(?)$
• $1000n = O(?)$
• $n^2/5 = O(?)$
• $10\log n = O(?)$
• $2n^3+n+\log n+200 = O(?)$
• $15 = O(?)$
Examples

• $3n = O(n)$
• $1000n = O(n)$
• $n^2/5 = O(n^2)$
• $10\log n = O(\log n)$
• $2n^3 + n + \log n + 200 = O(n^3)$
• 15 or any other constant $= O(1)$
Example 1

- ‘Star’ network
- Computing sum of all values
- Communication complexity: O(n)
Example 2a

- ‘Chain’ topology network
- Simple protocol where everyone sends value to server
- Communication complexity:?
Example 2a

- ‘Chain’ topology network
- Simple protocol where everyone sends value to server
- Communication complexity: $1+2+...+n = O(n^2)$
Example 2b

- ‘Chain’ network
- Protocol where each node waits for sum of previous values and sends
- Communication complexity: $1+1+\ldots+1 = O(n)$
Computing sums in a tree

• How many messages does it take?

• How much time does it take?
Global Message broadcast

• Message must reach *all nodes in the network*
 – Different from broadcast transmission in LAN
 – All nodes in a large network cannot be reached with single transmission
Global Message broadcast

• Message must reach *all nodes in the network*
 – Different from broadcast transmission in LAN
 – All nodes in a large network cannot be reached with single transmissions
Flooding for Broadcast

• The source sends a *Flood* message to all neighbors

• The message has
 – Type *Flood*
 – *Unique id*: *(source id, message seq)*
 – *Data*
Flooding for Broadcast

• The source sends a *Flood* message, with a unique message id to all neighbors

• Every node \(p \) that receives a flood message \(m \), does the following:

 – *If* \(m.id \) *was seen before, discard* \(m \)

 – *Otherwise, Add* \(m.id \) *to list of previously seen messages and send* \(m \) *to all neighbors of* \(p \)
Flooding for broadcast

• Storage
 – Each node needs to store a list of flood ids seen before
 – If a protocol requires x floods, then each node must store x ids
 • (there is a way to reduce this. Think!)
Assumptions

• We are assuming:
 – Nodes are working in synchronous communication rounds (e.g. transmissions occur in intervals of 1 second exactly)
 – Messages from all neighbors arrive at the same time, and processed together
 – In each round, each node can successfully send 1 message to all its neighbors
 – Any necessary computation can be completed before the next round
Communication complexity

• The message/communication complexity is:
Communication complexity

• The message/communication complexity is:
 – $O(|E|)$
Communication complexity

• The message/communication complexity is:
 – $O(|E|)$
 – Worst case: $O(n^2)$
Reducing Communication complexity (slightly)

- Node \(p \) need not send message \(m \) to any node from which it has already received \(m \)
 - Needs to keep track of which nodes have sent the message
 - Saves some messages
 - Does not change asymptotic complexity
Time complexity

• The number of rounds needed to reach all nodes: *diameter of G*
Computing Tree from a network

• BFS tree
 – The Breadth first search tree
 – With a specified root node
BFS Tree

• Breadth first search tree
 – Every node has a parent pointer
 – And zero or more child pointers

– BFS Tree construction algorithm sets these pointers
BFS Tree Construction algorithm

• Breadth first search tree
 – The root(source) node decides to construct a tree
 – Uses flooding to construct a tree
 – Every node p on getting the message forwards to all neighbors
 – Additionally, every node p stores parent pointer: node from which it first received the message
 • If multiple neighbors had first sent p the message in the same round, choose parent arbitrarily. E.g. node with smallest id
 – p informs its parent of the selection
 • Parent creates a child pointer to p
BFS Tree

• Property: BFS tree is a shortest path tree
 – For source s and any node p
 – The shortest path between s and p is contained in the BFS tree
Time & message complexity

- Asymptotically Same as Flooding
Tree based broadcast

• Send message to all nodes using tree
 – BFS tree is a *spanning* tree: connects all nodes

• Flooding on the tree

• Receive message from parent, send to children
Tree based broadcast

• Simpler than flooding: send message to all children

• Communication: Number of edges in spanning tree: n-1
Aggregation: Find the sum of values at all nodes

• With BFS tree

• Start from *leaf* nodes
 – Nodes without children
 – Send the value to parent

• Every other node:
 – Wait for all children to report
 – Sum values from children + own value
 – Send to parent
Aggregation

• Without the tree

• Flood from all nodes:
 – $O(|E|)$ cost per node
 – $O(n*|E|)$ total cost: expensive
 – Each node needs to store flood ids from n nodes
 • Requires $\Omega(n)$ storage at each node

 – Good fault tolerance
 • If a few nodes fail during operation, all the rest still get some value
Aggregation

• With Tree

• Also called Convergecast
Aggregation

• With Tree

• Once tree is built, any node can use for broadcast
 – Just flood on the tree

• Any node can use for convergecast
 – First flood a message on the tree requesting data
 – Nodes store parent pointer
 – Then receive data

• What is the drawback of tree based aggregation?
Aggregation

- With Tree

- Once tree is built, any node can use for broadcast
 - Just flood on the tree

- Any node can use for convergecast
 - First flood a message on the tree requesting data
 - Nodes store parent pointer
 - Then receive data

- Fault tolerance not very good
 - If a node fails, the messages in its subtree will be lost
 - Will need to rebuild the tree for future operations
BFS trees can be used for routing

• From each node, create a separate BFS tree
• Each node stores a parent pointer corresponding to each BFS tree
• Acts as routing table
BFS trees can be used for routing

- From each node, create a separate BFS tree
- Each node stores a parent pointer corresponding to each BFS tree
- Acts as routing table
- \(O(n^*|E|)\) message complexity in computing routing table
Observation on complexity

• Suppose \(c(n) = n \)

 – Then \(c(n) \) is \(O(n) \) and also \(O(n^2) \)

 – Although, when we ask for the complexity, we are looking for the tightest possible bound, which is \(O(n) \)
Big Ω – lower bounds

• For a system of n nodes,

• Communication complexity $c(n)$ is $\Omega(f(n))$ means:
 – There are constants a and N, such that:
 – For $n>N$: $b*f(n) < c(n)$

Allowing some initial irregularity, ‘$c(n)$’ is not smaller than a constant times ‘$f(n)$’

In the long run, $f(n)$ does not grow faster than $c(n)$
Big θ – tight bounds: both O and Ω

• For a system of n nodes,

• Communication complexity $c(n)$ is $\theta(f(n))$
 means:
 – There are constants a,b and N, such that:
 – For $n>N$:
 $b*f(n)<c(n)<a*f(n)$

Allowing some initial irregularity, $c(n)$ and $f(n)$ are
Within constant factors of each other.
In the long run, $c(n)$ grows at same rate as $f(n)$, upto constant factors.
Bit complexity of communication

- We have assumed that each communication is 1 message, and we counted the messages.
- Sometimes, communication is evaluated by bit complexity – the number of bits communicated.
- This is different from message complexity because a message may have number of bits that depend on n or |E|.
- For example, node ids in message have size $\Theta(\log n)$.

- In practice this is may not be critical since $\log n$ is much smaller than packet sizes, so it does not change the number of packets communicated.
- But depending on what other data the algorithm is communicating, sizes of messages may matter.
Size of ids

• In a network of n nodes
• Each node id needs $\Theta(\log n)$ (that is, both $O(\log n)$ and $\Omega(\log n)$) bits for storage
 – The binary representation of n needs $\log_2 n$ bits

• Ω – since we need at least this many bits
 – May vary by constant factors depending on base of logarithm
Computing Trees:

• What if the edges have weights?
Aggregation using Trees:

• What if the edges have weights?
• The cost may not be $O(n)$ since weights can be higher

• How to get the best performance?
Minimum spanning tree is

• A spanning tree (reaches all nodes)
• With minimum possible total weight

• How can we compute a minimum spanning tree efficiently in a distributed system?
• (remember, a node knows only its neighbors and edge weights)