
Distributed Systems
Distributed Object-Based Systems

Björn Franke
University of Edinburgh, 2015

OVERVIEW

• Basic Concepts

• Middleware Technologies

• CORBA

• DCOM

• .NET Remote Procedure Calls/Windows Communication
Foundation

• Google gRPC

REMOTE PROCEDURE CALLS (RPC)

BASIC CONCEPTS

REMOTE PROCEDURE CALLS (RPC)

BASIC CONCEPTS

MARSHALLING/UNMARSHALLING

BASIC CONCEPTS

HIGH-LEVEL VIEW

MIDDLEWARE TECHNOLOGIES

SLIGHTLY MORE DETAIL

MIDDLEWARE TECHNOLOGIES

• High-level  
abstractions & API

• Heterogeneity  
Hidden

• Transparent  
Distribution

• General purpose 
services e.g.  
directory/naming

COMMON OBJECT REQUEST BROKER ARCHITECTURE

CORBA

• Industry-defined standard for distributed objects

• Enables collaboration between systems on different operating systems,
programming languages, and computing hardware

• Interface definition language (IDL) to specify object interfaces. CORBA then
specifies a mapping from IDL to a specific implementation language.

• Central: Object request brokers (ORBs)

• Application initialises ORB, and accesses an internal Object Adapter, which
maintains things like reference counting, object (and reference) instantiation
policies, and object lifetime policies.

• Object Adapter is used to register instances of the generated code classes
(result of compiling the user IDL code, which translates interface definitions into
an OS- and language-specific class base for use by the user application).

GLOBAL ARCHITECTURE

CORBA

• The Object Request Broker (ORB) forms the core of any CORBA distributed
system.

• Horizontal facilities consist of general-purpose high-level services that are
independent of application domains.
• User interface
• Information management
• System management
• Task management

• Vertical facilities consist of high-level services that are targeted to a specific
application domain such as electronic commerce, banking, manufacturing.

OBJECT MODEL

CORBA

• CORBA has a traditional remote object model in which an object
residing at an object server is remote accessible through proxies

• All CORBA specifications are given by means of interface
descriptions, expressed in an Interface Definition Language (IDL).

• An interface is a collection of methods, and objects specify which
interfaces they implement.

• It provides a precise syntax for expressing methods and their
parameters.

• (In DCOM, interfaces can be specified at a lower level in the form of
tables, called binary interfaces.)

OBJECT MODEL

CORBA

• Object Request Broker (ORB): CORBA's object broker that
connects clients, objects, and services

• Proxy/Skeleton: Precompiled code that takes care of
(un)marshalling invocations and results

• Dynamic Invocation/Skeleton Interface (DII/DSI): To allow clients
to construct invocation requests at runtime instead of calling
methods at a proxy, and having the server side reconstruct those
request into regular method invocations

• Object adapter: Server side code that handles incoming
invocation requests.

OBJECT MODEL

CORBA

• Interface repository:

• Database containing interface definitions and which can be queried at
runtime

• Whenever an interface definition is compiled, the IDL compiler assigns
a repository identifier to that interface.

• Implementation repository:

• Database containing the implementation (code, and possibly also
state) of objects.

• Given an object reference, an object adaptor could contact the
implementation repository to find out exactly what needs to be done.

GENERAL ORGANISATION

CORBA

MESSAGING

CORBA

COMPONENT OBJECT MODEL TECHNOLOGIES

COM

• Microsoft COM (Component Object Model) technology in the
Microsoft Windows-family of Operating Systems enables software
components to communicate.

• COM is used by developers to create re-usable software components,
link components together to build applications, and take advantage of
Windows services.

• The family of COM technologies includes COM+, Distributed COM
(DCOM) and ActiveX® Controls.

• For new development, Microsoft recommends .NET as a preferred
technology because of its powerful managed runtime environment and
services.

HOW ARE COM AND .NET RELATED?

• COM and .NET are complimentary development technologies.

• COM and .NET applications and components can use functionality
from each system.

• COM and .NET can achieve similar results. The .NET Framework
provides developers with a significant number of benefits
including a more robust, evidence-based security model,
automatic memory management and native Web services support.

WHAT IS COM+?

• COM+ is the name of the COM-based services and technologies
first released in Windows 2000.

• COM+ brought together the technology of COM components and
the application host of Microsoft Transaction Server (MTS).

• COM+ automatically handles difficult programming tasks such as
resource pooling, disconnected applications, event publication
and subscription and distributed transactions.

• COM+ infrastructure also provides services to .NET developers
and applications through the System.EnterpriseServices
namespace of the .NET Framework.

DISTRIBUTED COM

DCOM

• Microsoft's solution to establishing inter-process communication,
possibly across machine boundaries.

• DCOM uses the RPC mechanism to transparently send and
receive information between COM components (i.e., clients and
servers) on the same network.

• Supports a primitive notion of distributed objects

• Evolved from early Windows versions to NT-based systems
(including Windows 2000/XP)

• Comparable to CORBA's object request broker

OVERVIEW OF DCOM

DCOM OBJECT MODEL

• An interface is a collection of semantically related operations

• Each interface is typed, and therefore has a globally unique interface
identifier

• A client always requests an implementation of an interface:

• Locate a class that implements the interface

• Instantiate that class, i.e., create an object

• Throw the object away when the client is done

• Note: COM+ is effectively COM plus services that were previously
available in an ad-hoc fashion

OBJECT MODEL

DCOM

OVERALL ARCHITECTURE

DCOM

INFRASTRUCTURE

.NET

• .NET Framework: programming environment

• Web Services: .NET provides a standard syntax for input and
output language that is defined for sites providing 'web services'.

• .NET Servers: Servers that work with .NET such as SQL Server

• .NET implementation

• Windows: Microsoft .NET, Linux: Mono

FRAMEWORK

.NET

FRAMEWORK - MORE DETAIL

.NET

XML WEB SERVICES

.NET

XML WEB SERVICES - SOAP

.NET

WINDOWS COMMUNICATION FOUNDATION (WCF)

.NET

• Implement/deploy a service-oriented
architecture (SOA), where services
have remote consumers

• Clients can consume multiple
services; services can be consumed
by multiple clients.

• Services are loosely coupled to each
other.

• Services typically have a WSDL
interface (Web Services Description
Language) that any WCF client can
use to consume the service

• WCF implements e.g. WS-
Addressing, WS-ReliableMessaging
and WS-Security, RSS Syndication
Services, WS-Discovery, routing and
support for REST services.

BETA ANNOUNCED IN OCTOBER 2015

GOOGLE GRPC

BETA ANNOUNCED IN OCTOBER 2015

GOOGLE GRPC

• Client application can directly call methods on a server application on a different
machine as if it was a local object

• Based around the idea of defining a service, specifying the methods that can be
called remotely with their parameters and return types

• Server implements this interface and runs a gRPC server to handle client calls

• Client has a stub that provides exactly the same methods as the server

• Numerous languages supported (C++, Java, Go, Python, Ruby, C#, Objective-C
and PHP)

• gRPC can use a variety of protocols for passing data across the wire, but the
default is based on its own mechanism for serialising data, called protocol
buffers, of which the latest version is called proto3

