Distributed Systems

Security
Rik Sarkar

University of Edinburgh
Fall 2014

Distributed Systems, Edinburgh, 2014



Security

* The problem: Whatever your system, there
are people trying to attack

— For money (credit card info)

— For information (you personal id, company
information, etc)

— To simply harm you or your organization (which
benefits competitors)



Some Types of attacks

* Eavesdropping/leakage:

— Getting information that they are not supposed to
get

— Eg. Listening in the network (easy on wireless),
access to storage etc



Some Types of attacks

* Masquerading
— Pretending to be someone else

— Eg. Someone intercepts your communication to
google and pretends to be gmail web site
* Gets gmail password

— In general, sends you a misguiding message
pretending to be “node X” which is a friend

* Either by taking over the communication channel, or by
taking over the other node itself



Some Types of attacks

* Disruption
— Does something to spoil your system operation

— E.g. denial of service (DOS): send so many
requests/messages to a node that it cannot
communicate with anyone else (or a server
cannot serve any real requests)

* More powerful: Distributed DOS: same, using many
adversary nodes

— E.g. Jamming: block the communication channel
— E.g. Somehow cause routers to fail



Model of attacks and security

Alice sends messages to Bob
Messages go through a “channel”

The adversary Eve can read things on the channel
(think ethernet or wifi)

Eve is trying to read/modify/spoof the messages

Alice and Bob want to avoid Eve



Model of attacks and security

* The model applies even when the channel is
not a network medium

* E.g. One app (alice) writes a file to hard drive

(channel), which is later read by another app
(Bob)

 Point is, eve should not be able to decode the
file even with access to HDD



Main Defense: Encryption

 Code the message

* Main strategy in encryption:
— Alice wants to send a number “25” to Bob
— Two of them know a secret key “7”
— Alice sends “32” to Bob
— Bob compute 32-7 = 25 to recover

— Someone eavesdropping hears “32” and cannot
recover actual message without knowing the secret
key

— The key unlocks the code



Encryption

Can be applied to any data

— Since we can treat anything as a “number” based
on binary representation

— Just break into small pieces on which we can apply
the “key addition” idea



Example: Caesar cipher

* Take each alphabet “number” and add a key
—(a+x) mod n

* E.g.forx=2,n=26
— The function is (a + 2) mod 26
— cat -> ecv
— 200 -> bqq

— Problem?



More complex encryptions

* Take binary representations, XOR with key in
blocks

— Not very hard for adversary to recover key by
analyzing lots of data

— More complex encryptions are harder to decode

— E.g multiple layers of encryption

Suggested reading: A. Conan Doyle: Adventure of the dancing men.



Encryption

e Usually, the algorithm is assumed known to
everyone. Only the key is secret

* E.g. A web site uses the same algorithm to
communicate with everyone. But uses
different keys.

— One user cannot read another’s messages.



Encryption

* Use in authentication/signing

 |f the decoding using the secret key works,
that implies the message was sent by Alice

* Prevents impersonation attacks



Encryption

Problem:
— Both parties have to know a shared secret key
— And have to keep it “secret”

— Question: How can you share the key without
having encryption?



Public key encryptions

* Each node uses 2 different keys:
— One is public: known to everyone
— one is private: known only to the node

* Alice encrypts using Bob’s public key and
sends

* Only bob can decrypt this: secure



Public key encryptions

e Alternatively:

* Alice encrypts using her own key
— Sends both original and encrypted data

* Bob can verify that decrypting the encrypted

part with Alice’s public key gives the same
data

— Authenticated, or digitally signed



Public key encryptions

* How do you send a message both secure and
authenticated?



Example

* 2 Keys are inverses:
— Using addition, 7 and -7
— Or, using multiplication, 7 and 1/7

* Problem: inverse is easy to find given one key



Example: RSA

M: original plaintext

C: cipher text (encrypted)

e = public key; d = private key
n=p*qg; where p and q are primes



Example: RSA

M: original plaintext

C: cipher text (encrypted)

e = public key; d = private key
n=p*qg; where p and q are primes



RSA

Choose two distinct prime numbers, such as p =61 and g =53
Compute n=61 * 53 =3233
Compute ¢p(n)=(p-1)(g-1)=(61-1)(53-1)=3120
Choose any number 1 < e <3120 that is coprime to 3120.
— Say, e=17
Compute d = e}(mod ¢(n)) = 2753
Public: (n,e) = (3233, 17); Private: (n,d) = (3233, 2753)
M =65
Encryption: C = M® mod n = 65! mod 3233 = 2790
Decryption: M = C¢ mod n = 2790273 mod 3233 = M

This example is from wikipedia



Public key cryptosystems

* Rely on the following fact:

— Given a number, finding its prime factors is
computationally hard (think NP-complete)

— There is unlikely to be good algorithms
— Best strategy is to try out all possibilities
— Given n, adversary cannot find p & g

— Except by trying everything or lucky guesses



Public key cryptosystems

* Depend heavily on number theory

* Properties of numbers
— Primes are the “building blocks” of numbers

* Generating prime numbers is important in
cryptography



Public key cryptosystems

* Computing large powers (657 and 2790%7>3
etc) is problematic

— Even with some mathematical tricks

* Practical systems rely on public key
cryptography to exchange a random secret
key

* Then use the secret key to actually transfer
data



Authentication

Authentication: checking id

How do you know you are talking to the right
person?

Send them some text
They send back encrypted with their provate key

Decrypt with their public key and cross check
with original data

Problem?



Authentication

* Alice’s public key can be used to check that
data is from alice

* How do you know that the key is actually
alice’s public key?



Authentication

* Alice’s public key can be used to check that
data is from alice

* How do you know that the key is actually
alice’s public key? That someone has not

intercepted communication in the middle and
pretending to be alice?

* No good method



Authentication

* Real systems:
— Depend on trusted third parties
— Authorities

e But whois trusted?



Authentication

* Real systems:
— Depend on trusted third parties

— Authorities who determine who is honest and
who is trying fraud

 But whois trusted?
— Determined by yet other parties



Authentication and encryption
methods

o SSL
e TLS
e Kerberos etc



Password storage

* Use a encryption with a specific private (throw
away the public key)

* Take the passwd, store the encrypted version

— No need to store the actual password

— When checking login passwd, encrypt the input,
compare with the stored encrypted version

* Essentially hashing



Data verification

* Use the encryption compute a small hash of
the file

* When file is transmitted across a channel,
compute the encryption hash again and
compare.

* Data corruption over the channel will cause
the hash to be different (with high probability)



Distributed Systems, Edinburgh, 2014



