Distributed Systems

Course Review
Rik Sarkar

University of Edinburgh
Fall 2014

Distributed Systems, Edinburgh, 2014

Today: Review of course

* Slight updates to slides
— Including references etc.

— Always use the up to date online version in
studying

Distributed Computing is everywhere

Web browsing

Multiplayer games

Digital (Stock) markets

Collaborative editing (Wikipedia, reddit, slashdot..)
Big data processing (hadoop, google etc)

Networks

Mobile and sensor systems

Ubiquitous computing

Autonomous vehicles

Ref: CDK

Reading & Books

* No required textbook

e Suggested references:

— [CDK] Coulouris, Dollimore, Kindberg; Distributed
Systems: Concepts and Design

e 4t Edition: http://www.cdk4.net/wo
e 5t Edition: http://www.cdk4.net/wo

— [VG] Vijay Garg; Elements of Distributed Computing
— [NL] Nancy Lynch; Distributed Algorithms
— [Wiki] : Wikipedia

Distributed system
* Computingin a graph

— Nodes: computers
— Edges: Connections

>
gl — &

Distributed Systems, Edinburgh, 2014

The main challenge:

Knowledge is distributed
No one node knows everything

Different nodes have different views (data) of
the system

Yet, nodes are expected to achieve a common
goal

Other challenges

Communication is expensive
— We have to be efficient: Send the right messages

— Communication is usually measured in asymptotic
notation

+ 0,0,6
Time is relative
— Makes hard to compare events
There may be failures: nodes, links etc
Mobility
Security

Scalability: There can be many nodes: all problems
become more challenging

Simple Algorithms

Example

* Asimple distributed computation:
— Each node has stored a numeric value
— Compute the total of the numbers

Server a b C d

——— 00—

Cost: 4 messages
S v(d) |

t
V(c) +v(d)

v(b)*+v(c)+v(d)
\ﬁ/(&)"‘V(b)*‘Wé@t)ﬂev(ﬁtéms, Edinburgh, 2014 9

Convergecast
Ref: NL

Suppose root wants to
know sum of values at all

nodes

It sends “compute”
message to all children

The values move upward

Each node adds values from \
all children and its own 4 X >
value

Sends it to its parent

root

N7/

Communication with all nodes

* Flooding

* Constructing a (BFS or spanning) tree using
flooding

Minimum spanning trees

Trees of smallest total edge costs
Useful in communication

Prim’s & Kruskal’s algorithms

— [Ref: Wiki]

GHS algorithm

— [Ref: NL]

Maximum independent set and maximal
independent sets

Time
Ref: CDK
Time & ordering of events are important

Clocks are not perfect
— Drift and skew

Simple algorithms to unify time
— Christian’s algorithm, berkeley, NTP etc..

Not in exam: GPS, special relativity

Logical time

* For ordering of events without using clocks
— Ref: CDK & VG

Happened before

e a—b :a happened before b

— If a and b are successive events in same process
then a—b

— Send before receive
* If a: “send” event of message m
* And b : “receive” event of message m
* Thena—b

— Transitive: a—b and b—c =a—c

* Events without a happened before relation
are “concurrent”

e el—e2, e3—ed,el—e5,e5]||e2

Happened before & causal order

* Happened before == could have caused/
influenced

* Preserves causal relations
* Implies a partial order

— Implies time ordering between certain pairs of
events

— Does not imply anything about ordering between
concurrent events

Logical clocks

dea: Use a counter at each process
ncrement after each event

t counts the states of the process

Each event has an associated time: The count
of the state when the event happened

Lamport clocks

Keep a logical clock (counter)
Send it with every message

On receiving a message, set own clock to
max({own counter, message counter}) + 1

For any event e, write c(e) for the logical time
Property:

— If a—b, then c(a) < c(b)

—Ifa || b, then no guarantees

Lamport clocks: example

Concurrency and lamport clocks

e [fel—e2
— Then no lamport clock C exists with C(el)== C(e2)

Concurrency and lamport clocks

e [fel—e2
— Then no lamport clock C exists with C(el)== C(e2)

* Ifel]|]|e2, then there exists a lamport clock C
such that C(el)== C(e2)

The purpose of Lamport clocks

e |fa—b, then c(a) < c(b)
* |f we order all events by their lamport clock
times
— We get a partial order, since some events have
same time
— The partial order satisfies “causal relations”

Modifications

e Basic lamport clocks can have same time for 2
events in different processes
— We can break these ties by process id
— Then any 2 events are ordered: total order

e Vector clocks
— Lamport clock ordering do not imply causal relation

— Vector clocks can be used to get perfect knowledge of
causality

Distributed snapshots
Ref: CDK

 Consistent cuts

— Snapshot algorithms record consistent states

* Single snapshots are good for detecting stable
predicates

* Non-stable predicates
— Possibly, definitely etc
— Require checking all consistent cuts

Mutual Exclusion
Ref: CDK, VG

Properties: Safety, Liveness, Fairness
Central server

Token ring

Lamport

Ricart & Agrawala

Maekawa’s quorum system with grids

Communication and models

Medium access & broadcast
Routing & point to point communication
Transport: ordering and congestion control

Each layer of a network solves a different
distributed problem

Synchronous and asynchronous communication
— Communication in rounds

— Easy to implement when message transmission time is
bounded

Failure detectors
Ref: CDK

 With bounded message delays
* With probabilities

Leader election
Ref: NL & CDK

Find the highest id node
Convergecast
Ring search: chang and roberts

Ring search: Exponentially growing: Hirshberg
Sinclair

Bully algorithm

Multicast

Usually used in local/small networks with
broadcast

When used in slightly larger networks

Can we ensure that messages are delivered
reliably to all nodes in group?

We use basic multicast as a building block for
reliable multicast

Possible guarantees: FIFO, causality, total
order

Termination and OS

* Termination detection
— Weight throwing
— Dijkstra Scholten
* Ref: Wiki, VG
* OS
— Networked OS
— Distributed OS

— Virtualization
e Ref: CDK

Peer to Peer
Ref: CDK, Wiki

 The challenges and benefits

 Examples: Internet, napster, gnutella, chord,
skype, bittirrent, SETI@home

* DHT

Localization & Location based routing

* Ref: Slides only

— You can find more material on internet, wiki,
other course slides

* Not in exam: MDS, lower and upper bounds
on complexity of greedy and face routing,
cross link detection protocol, Rumor routing

Coloring and MIS

Assignment of non-interfering communication
channels

Finding largest sets of non-interfering nodes
Randomized algorithm can be much more
efficient

Ref: given in slides

Security

* Main defense is Encryption
* Public key encryption, RSA

Course Matter

* Assignment
* Course
e Material

