Distributed Systems

Location based protocols

Rik Sarkar

University of Edinburgh Fall 2014

Announcements

- Assignment deadline extended to Nov. 10
- No class/office hour on Nov 10

Routing in ad hoc wireless networks

- Find route between pairs of nodes wishing to communicate.
- Proactive protocols: maintain routing tables at each node that is updated as changes in the network topology are detected.
 - Heavy overhead with high network dynamics (caused by link/node failures or node movement).
 - Not practical for networks that change frequently

Routing in ad hoc wireless networks

- Reactive protocols: routes are constructed on demand. No global routing table is maintained.
- More appropriate for networks with high rate of changes
 - Ad hoc on demand distance vector routing (AODV)
 - Dynamic source routing (DSR)

Dynamic Source Routing (DSR)

- Node S wants to send a message to node D
- S initiates a a route discovery
- S floods the network with route request (RREQ) message
- Each node appends its own id to the message

Route Discovery in DSR

- Destination D on receiving the first RREQ sends a route reply (RREP)
- RREP is sent on a route obtained by reversing the route in received RREQ

When node S sends a data packet to D, the entire route is included in the packet header, hence the name source routing

- When a link fails, an error message with the link name is sent back to S.
- S deletes any route using that link and starts discovery.

 Distributed Systems, Edinburgh, 2014

Route caching

 When a node receives or forwards a message, it learns routes to all nodes on the path

Advantage:

- S may not need to send RREQ
- Intermediate node on receiving RREQ, can respond with complete route

Disadvantage:

 Caches may be stale: S tries many cached routes before starting a discovery. Or, intermediate nodes return outdated information.

DSR: Summary

Advantages:

- Routes computed only when needed
- Caching can make things efficient
- Does not create loops

Disadvantages

- Entire route must be contained in message: can be long for large networks
- Flooding causes communication to many nodes
- Stale caches can be a problem
- Not suitable for networks with frequent changes

Ad hoc On-Demand Distance Vector Routing (AODV)

- Maintains routing tables at nodes so that the route need not be stored in the message
- No Caches: Only one route per destination

AODV Route Discovery

Source floods the network

AODV Route Discovery

- Other nodes create parent pointer
- A node forwards a RREQ on ly once

AODV Route Discovery

- Other nodes create parent pointer
- A node forwards a RREQ on ly once

RREP is forwarded via reverse path

- RREP is forwarded via reverse path
- Creates a forward to path, Edinburgh, 2014

Route expiry

- A path expires if not used for a certain time.
- If a node sees that a routing table entry has not been used by this time, it removes this entry
- Even if the path itself is valid
- Good for networks with frequent changes
- Bad for static and stable networks

Can create loops

- Assume C->D link has failed, but A does not know because the ERR message was lost
- C is now trying to find path to D
- A responds since A thinks it has a path
- Creates loop: C-E-A-B-C

Sequence numbers in AODV

- If A has a route to D, A keeps a sequence number.
- A increments this number periodically: tells how old the information is

Using sequence numbers

Rule: sequence number must increase along any route

Sequence number rule avoids loop

 A does not reply, since its sequence no. is less than that of C

AODV

- Routing tables, message does not contain route
- Fresh routes preferred
- Old unused routes expire
- Stale routes less problematic
- Needs sequence numbers to prevent loops
- Better for more dynamic, changing environments

Routing in ad hoc networks

- Reactive protocols: routes are constructed on demand. No global routing table is maintained.
- More appropriate for networks with high rate of changes
 - Ad hoc on demand distance vector routing (AODV)
 - Dynamic source routing (DSR)
- Need flooding
 - Inefficient in large networks

Geographical routing: Using location

 Geographical routing uses a node's location to discover path to that node.

Geographical routing

Assumptions:

- Nodes know their own geographical location
- Nodes know their 1-hop neighbors
- Routing destinations are specified geographically (a location, or a geographical region)
- Each packet can hold a small amount of routing information.

Problem with Greedy Routing

It can get stuck at a local minimum

How will you get around an obstacle?

Face Routing

- Use a planar graph
- Keep left hand on the wall, walk until hit the straight line connecting source to destination.
- Then switch to the next face.

Distributed Systems, Edinburgh, 2014

Face Routing

- Keep left hand on the wall, walk until hit the straight line connecting source to destination.
- Then switch to the next face.

Face Routing Properties

- All necessary information is stored in the message
 - Source and destination positions
 - The node when it enters face routing mode.
 - The first edge on the current face.
- Completely local:
 - Knowledge about direct neighbors' positions is sufficient
 - Faces are implicit. Only local neighbor ordering around each node is needed.

What if the destination is disconnected?

- Face routing will get back to where it enters the perimeter mode.
- Failed no way to the destination.
- Guaranteed delivery of a message if there is a path.

An example of Unit Disk Graph

200 nodes randomly deployed in a 2000×2000 meters region. Radio range =250meters

Face routing needs a planar graph...

Compute a planar subgraph of the unit disk graph.

- Preserves connectivity.
- Distributed computation.

Relative Neighborhood Graph and Gabriel Graph

- Relative Neighborhood Graph (RNG) contains an edge uv if the lune is empty of other nodes.
- Gabriel Graph (GG) contains an edge uv if the disk with uv as diameter is empty of other nodes.
- Both can be constructed in a distributed way.

Relative Neighborhood Graph and Gabriel Graph

• Claim: $MST \subseteq RNG \subseteq GG$

 Thus, RNG and GG are planar and keep the connectivity (MST connects all nodes in UDG).

An example of GG and RNG

Two problems remain

- Both RNG and GG remove some edges → a short path may not exist!
- The shortest path on RNG or GG might be much longer than the shortest path on the original network.
- Even if the planar subgraph contains a short path, can greedy routing and face routing find a short one?

Bad news: Lower bound of localized routing

- Any deterministic or randomized localized routing algorithm can take a path of length $\Omega(k^2)$, if the optimal path has length k.
- The adversary decides where the chain wt is. Since we store no information on nodes, in the worst case we have to visit about $\Omega(k)$ chains and pay a cost of $\Omega(k^2)$.

Good news: greedy forwarding is optimal

- If greedy routing gets to the destination, then the path length is at most O(k²), if the optimal path has length k.
- |uv| is at most k. On the greedy path, every other node is not visible, so they are of distance at least 1 away. By this packing property, there are at most O(k²) nodes inside a disk of radius k.

How is face routing?

Face routing can be bad: O(n)

Adaptive Face Routing

- Suppose the shortest path on the planar graph is bounded by L hops.
- Bound the search area by an ellipsoid {x : |xs|+|xt| <= L} never walk outside the ellipsoid.
- Follow one direction, if we hit the ellipsoid; turn back.
- In the worst case, visit every node inside the ellipsoid
- About O(L²) by the bounded density property.

Adaptive Face Routing

- How to guess the upper bound L?
- Start from a small value say |st|; if we fail to find a path, then we double L and rerun adaptive face routing.
- By the time we succeed, L is at most twice the shortest path length k. The number of phases is O(log k).
- Total cost = O($\Sigma_i(k/2^i)^2$)=O(k^2). | asymptotically

Combine Greedy and Face Routing

- Route greedy till it gets stuck at some node p
- Switch to face routing
- When at some node q which is nearer to destination than p, switch back to greedy
- Called Greedy-Face-Greedy strategy

Many Variations on these strategies

- [Bose, et.al 99] Routing with guaranteed delivery in ad hoc wireless networks.
- [Karp and Kung 00] GPSR: Greedy Perimeter Stateless Routing for Wireless Networks.
- [Kuhn, et.al 02] Asymptotically optimal geometric mobile ad hoc routing.
- [Kuhn, et.al 03a] Worst-case optimal and average-case efficient geometric ad hoc routing.
- [Kuhn, et.al 03b] Geometric ad hoc routing: of theory and practice.
- [Kim, et.al 05b] Geographic Routing Made Practical.
- [Kim, et.al 05a] On the Pitfalls of Geographic Face Routing.
- [Frey, et.al 06] On Delivery Guarantees of Face and Combined Greedy-Face Routing in Ad Hoc and Sensor Networks.

Lesson: Do it carefully!!

The protocols in practice

- Locations are not always known
- Communication ranges are not disks
 - Planar graph construction fails

Picture: Govindan et al. Systems, Edinburgh, 2014

Experiment

• GPSR succeeds in 68.2% directed pairs

A 50-node testbed at Intel Berkeley Lab

Alternative:

- Cross link detection protocol
 - Detects crossing links and appropriately does routing on non-planar graphs.
- Kim, Y.-J., Govindan, R., Karp, B., and Shenker, S., On the Pitfalls of Geographic Face Routing, DIAL-M-POMC'05.
- Kim, Y.-J., Govindan, R., Karp, B., and Shenker, S., <u>Geographic Routing Made Practical</u>, NSDI 2005.

Problem: How to find the data?

A tourist in a park asks

"Where is the elephant?"

Out of all the sensors/cameras which one is close

to an elephant?

Data centric routing

- Traditional networks try to route to an IP address
- Find path to the node with a particular ID
- But what if we try to find data, not specific nodes?
- After all, delivering data is the ultimate goal of routing and networks
- Data centric storage
 - Storage depends on the data (elephant, giraffe, song...)
- Data centric routing (search)
 - Route to the data

Distributed Database

- Information Producer
 - Can be anywhere in the network
 - May be mobile
 - Many producers may generate data of the same type
- User or Information Consumer
 - Can be anywhere
 - May be many

Distributed Database: Challenges

- Consumer does not know where the producer is, and vice versa
- Need to search : Must be fast, efficient

Basic methods:

- Push: Producer disseminates data
- Pull: Consumer looks for the data
- Push-pull: Both producer, consumer search for each-other

Distributed hash tables

- Use a hash on the data: h(song1.mp3) = node#26
- Anyone that has song1.mp3 informs node#26
- Anyone that needs Song1.mp3 checks with node#26
- Used in peer to peer systems like Chord, pastry etc

Geographic Hash Tables

Content based hash gives coordinates:

$$- h(lion) = (12, 07)$$

 Producer sends msg to (12, 07) by geographic routing and stores data

 Consumer sends msg to (12, 07) by geographic routing and gets data

GHT

- What if there is no sensor at (12, 07)?
- What if geographic routing gets stuck before it gets to (12, 07)?

GHT

- L = hash location
- ade: face that contains L
- GHT stores copies of data on a,d,e
- a is in charge: home node: makes sure data is fresh, all nodes on perimeter has data

Fault handling

- What if home node a dies?
- Replicas have a timer that triggers a new check
- A new node becomes home

Fault and load handling

- A few nodes have all the responsibility: too much load, susceptible to failure
- Hash location is replicated at each level of a quadtree down to some fixed depth

Distributed Systems, Edinburgh, 2014

GHT

- Advantages
 - Simple
 - Handles load balancing and faults
- Disadvantages
 - Not distance sensitive: everyone has to go to hash node even if producer and consumer are close
 - Overloads boundaries of holes
 - If a data is queried or updated often, that node has a lot of traffic – bottleneck

Rumor Routing

 Producer: Send data along a curve or random walk, leave data or pointers on nodes

 Consumer: Route along another curve or random walk, hope to meet data or pointer

Rumor routing

- Each node maintains a list of events
- Adds events as they happen
- Agents: Packets that carry events in the network
 - Aggregate events of each node they pass through
- Agents move in random walk. From 1-hop neighbors select one that has not been visited recently

Simulation

- 200x200 field, communication radius 5
- A = #agents, La=agent TTL, Lq=query TTL

100 Events, 4000 Nodes

Problems

- Each agent carries list of events : can be large
- Random walk can take a long time to reach far away regions
- Harder to analyze for the specific algorithm in the paper
- Inefficient: may visit same nodes many times

Double rulings

- Store data on a curve, like rumor routing.
- Not a random curve, a more structured approach, like GHT
- The curve depends on the data

Rectilinear Double Ruling

- Producer stores data on horizontal lines
- Consumer searches along vertical lines
- Correctness: every horizontal line intersects every vertical line
- Distance sensitive: q finds p in time O(d) where d = |pq|. How?

