Distributed Systems

Failure detectors

Rik Sarkar
James Cheney

University of Edinburgh
Spring 2014



Failures

e How do we know that something has failed?
* Let’s see what we mean by failed:

* Models of failure:

NoOouUuswNE

Assume no failures

Crash failures: Process may fail/crash

Message failures: Messages may get dropped

Link failures: a communication link stops working
Some combinations of 2,3,4

More complex models can have recovery from failures

Arbitrary failures: computation/communication may be
erroneous



Failure detectors
Ref: CDK

* Detection of a crashed process
— (not one working erroneously)

* A major challenge in distributed systems

* A failure detector is a process that responds to
guestions asking whether a given process has

failed

— A failure detector is not necessarily accurate



Failure detectors

Reliable failure detectors
— Replies with “working” or “failed”

Difficulty:

— Detecting something is working is easier: if they respond to a message, they
are working

— Detecting failure is harder: if they don’t respond to the message, the message
may hev been lost/delayed, may be the process is busy, etc..

Unreliable failure detector
— Replies with “suspected (failed)” or “unsuspected”
— Thatis, does not try to give a confirmed answer

We would ideally like reliable detectors, but unreliable ones (that say give
“maybe” answers) could be more realistic



Simple example

e Suppose we know all messages are delivered
within D seconds

* Then we can require each process to send a
message every T seconds to the failure
detectors

 |f a failure detector does not get a message
from process p in T+D seconds, it marks p as
“suspected” or “failed”



Simple example

* Suppose we assume all messages are delivered
within D seconds

 Then we can require each process to send a
message every T seconds to the failure detectors

* |f a failure detector does not get a message from
process p in T+D seconds, it marks p as

“suspected” or “failed” (depending on type of
detector)



Synchronous vs asynchronous

In a synchronous system there is a bound on message
delivery time (and clock drift)

So this simple method gives a reliable failure detector

In fact, it is possible to implement this simply as a
function:
— Send a message to process p, wait for 2D + € time

— A dedicated detector process is not necessary

In Asynchronous systems, things are much harder



Simple failure detector

* |f we choose T or D too large, then it will take
a long time for failure to be detected

* |f we select T too small, it increases
communication costs and puts too much
burden on processes

* |f we select D too small, then working
processes may get labeled as failed/suspected



Assumptions and real world

* |n reality, both synchronous and
asynchronous are a too rigid

* Real systems, are fast, but sometimes
messages can take a longer than usual
— But not indefinitely long

* Messages usually get delivered, but
sometimes not..



Some more realistic failure detectors

 Have 2 values of D: D1, D2
— Mark processes as working, suspected, failed

e Use probabilities

— Instead of synchronous/asynchronous, model
delivery time as probability distribution

— We can learn the probability distribution of
message delivery time, and accordingly extimate
the probability of failure



Using bayes rule

e a=probability that a process fails within time T
* b=probability a message is not received in T+D

* So, when we do not receive a message from a process
we want to estimate P(a|b)

— Probability of a, given that b has occurred

P(bla)P(a)
P(b)

If process has failed, i.e. a is true, then of course message will not
be received! i.e. P(b|a) = 1. Therefore:

P(a)
P(b)

P(alb)=

P(alb)=




Leader of a computation

* Many distributed computations need a
coordinating or server process

— E.g. Central server for mutual exclusion
— Initiating a distributed computation
— Computing the sum/max using aggregation tree

* We may need to elect a leader at the start of
computation

* We may need to elect a new leader if the
current leader of the computation fails



The Distinguished leader

 The leader must have a special property that
other nodes do not have

* |f all nodes are exactly identical in every way
then there is no algorithm to identify one as
leader

e Our policy:
— The node with highest identifier is leader



Node with highest identifier

If all nodes know the highest identifier (say n), we do not
need an election

— Everyone assumes n is leader
— n starts operating as leader
But what if n fails? We cannot assume n-1 is leader, since

n-1 may have failed too! Or may be there never was
process n-1

Our policy:
— The node with highest identifier and still surviving is the leader

We need an algorithm that finds the working node with
highest identifier



Strategy 1: Use aggregation tree

Suppose node r detects that leader has
failed, and initiates leader election

Node r creates a BFS tree

Asks for max node id to be computed via
aggregation 7
— Each node receives id values from children

— Each node computes max of own id and
received values, and forwards to parent «f

2 8
Needs a tree construction
If n nodes start election, will need n trees

— 0O(n?)communication

— O(n) storage per node



Strategy 1: Use aggregation tree

Suppose node r detects that leader has
failed, and initiates leader election

Node r creates a BFS tree

7
Asks for max node id to be computed via

aggregation N7 ax 2
— Each node receives id values from children y) 5 3
— Each node computes max of own id and

received values, and forwards to parent & A X

Needs a tree construction

If n nodes start election, will need n trees
— 0O(n?)communication
— O(n) storage per node



