Distributed Systems

Operating systems
Rik Sarkar

University of Edinburgh
Fall 2014



Termination detection
Ref: Wiki, VG

How do we know when a distributed
computation has ended?

)

We track nodes being in state “idle” Vs “Active’

Assume: an idle node becomes active only on
receiving a message from some other node.

— (exception : the initiator: leader/server etc..)

Termination is all nodes being idle



Termination detection (weight
throwing)

We suppose that the computation is started by a process s.

— This means, other (idle) processes start working (becomes active) after
receiving message from s or some other process

— They have no other way to know that a computation is in progress
s wants to know when all other processes have concluded working
S starts with weight=1.0
Other processes start with weight =0

When a process sends a message, it puts part (say, half) of its
weight in the message.

When a process receives a message, it adds the message weight to
its own weight.

When a process has finished computing, (becomes idle) it sends its
current weight to s

When s has weight=1.0, it knows no other process is active



Termination detection (weight

throwing)

 Works on the assumption that no message is
lost

— Methods like TCP give good guarantee for delivery

— Many other distributed algorithms have this
assumption

— Useful for their termination detection

* Drawback:
— What if there are many messages?
— (Homework!)



Termination detection (Dijkstra-scholten)

Maintains a tree of which node initiated computation at which
other node

Each node has active children counter (cc)
When node x sends a message toy

— Xincrements cc

— Ifywasidle
* y becomes active
* yremembers x as the parent

— If y was already active
* ysends ack to x
When x receives an ack
— x decrements cc
When y finishes all computation and is idle

— And hascc=0
* ysends ack to parent



Termination detection (Dijkstra-scholten)

* How do you describe its Message complexity ?



Operating System

* How different operating system issues relate
to distributed system design



Operating System
Ref: CDK
* What is an operating system?
* An operating system is a resource manager

* |t provides an abstract computing interface to
processes

— A program (and the programmer) does not need to know
the details of the hardware

— It asks the operating system to have something done, the
OS gets it done by the hardware

— Eg. You don’t need to know what modem or LAN card is
being used to write a network based program

* Ask the OS “please send message m to IP address x”
* OS has “drivers” for the network interface to get the job done



Operating System

What is an operating system?
An operating system is a resource manager
It provides an abstract computing interface to processes
OS arbitrates resource usage between processes
— CPU
— Memory, filesystem
— Network
— Keyboard, mouse, monitor
— Other hardware

This makes it possible to have multiple processes in the same
system

— If 2 processes ask for use of same resource
— OS decides who gets is when, how much etc



Operating System

How OS handles different resources

Memory:

— Each process is given a different part of memory to use, they
cannot access other’s memory

— If it needs more memory, OS will allocate from unallocated
memory store

Filesystem

— OS checks that process has rights to read/write the file

— Makes sure that 2 processes are not writing the same file
Network:

— OS receives messages from processes, sends them to network
card one at a time

— When messages are received, OS delivers to suitable processes



Operating System

How OS handles different resources
Keyboard/mouse:

— User types/clicks. Which application should get it?
— OS decides

Apps want to display things on screen.
— OS decides when/where display will occur

CPU: the most basic resource

— Each process runs for a short period, and the control
returns to OS

— OS selects the process to run for the next slice



Operating System

 Hardware is designed so that OS can enforce
these actions. E.g.:

 CPU has kernel mode and user mode
— Certain commands can only be used in kernel mode

* Memory:
— Process X thinks it is using memory from 0000 to 1000

— Actually, it is using 40050000 to 40051000

— The 4005 is loaded into first part of the memory
address register when the process starts executing

— Process has no way to know or modify it



Operating System

* OS makes processes oblivious of environment
* Process does not know details of hardware

* Process does not know about other processes
(unless they communicate with each-other)



Threads

Threads are processes inside a process!
They have access to the same memory space
So communication between threads is easier

Threads need more or less the same
information as the process itself, so switching
execution between threads is less work for
the OS

— Lightweight context switch



Threads

e Use of threads:
— Imagine a server interacting with many clients

— A separate thread per client makes it easier to
write a program that works with many clients

— Suppose client 1 is slow, and client 2 works faster

— When thread 1 is waiting for client 1 to respond,
thread 2 can continue working for client 2



Networked OS (any standard OS)

A networked OS is aware that it is connected to the network
Every node has an OS running

Every node manages the resources at that node

A process can request communication to processes in other nodes

— It has to be explicitly aware that it is requesting service at at different
node

— And which node it is requesting (eg. |.P. address)

— So it also has to know which services/resources are aailable in the
netwok

A process cannot request resources in control of a different
computer

It has to communicate with a process on that computer and
request it to do the job

Distributed computing has to be done explicitly



Distributed OS

The OSes running on the different computers act like a single OS

A process does not get to know (or need to know) that other
resources/processes are at other computers

E.g.:
— Process gets input/output from hardware X, which can be on any
computer

— Process A communicates with process B the same way whether they
are on same computer or not

— OS takes care of using the network if needed

A process may be running on a different computer from where it
was started. Processes can be moved among different computers

The “distributed” nature of the system is hidden from the
processes

The OS manages all the “distributed” aspects



Distributed OS

One interface to all resources in the network

Regular program can be made torunina
distributed fashion

Easier to program applications that make use of
networked resources

Orisit?



Problems with distributed OS

 What happens if part of the network fails, and
processes are separated into 2 sets?

— Now we have to tell processes that the network has
failed, and process has to take action

— What if some OS-processes were moved elsewhere?

* Suppose we start processes A and B on the same
computer

— OS moves them to different computers

— But A and B communicate a lot, so it would have been
efficient to have them on the same computer!



Problems with distributed OS

e Access to offsite resources
— Has to be through explicit network connection
— All computers in the world cannot be in same system!

* Adding new nodes to a distributed computing
— May be part of a different instance of the OS
— We will still need explicit connections

* Distributed OS does not help a lot with
distributed computing



Problems with distributed OS

A network/computer failure means part of the OS failed

— Hard to design OS with tolerance to such failures

Distributed OS has to allow for lots of different possibilities
in distributed computing

— Harder to design
— In fact, it is not possible to allow for all different possibilities

“Distributed computing” means different things in different
cases

Better to let the application programmer decide how it will
be distributed, and how to handle communication, failure
etc

OS provides only the basic infrastructure



Networked OS vs Distributed OS

As a result, we do not have any distributed OS
in regular use

Networked OS are popular
Provide communication facilities

Let software decide how they want to execute
distributed computation

— More flexibility

— Failure etc are application’s responsibility

— OS continues to do basic tasks



Distributed computation in Networked
OS

e Use distributed algorithms at the application layer for
— Synchronization
— Consistent ordering
— Mutual Exclusion
— Leader election
— Failure detection
— Multicast
— Etc..

* And design distributed computing applications

* Different applications will need different sets of
features



Virtualization

* Avirtual machine runs as an application on a computer
* It emulates the hardware of a computer
* Itis possible to run an operating system in a virtual machine

The VM application takes the OS executable as input

It then meticulously executes the steps a real computer would have
taken

But does this in an application environment

That is, instead of a real CPU, the VM has a data structure
representing a CPU

It then modifies the variables in the data structure exactly the way the
registers of a CPU would have changed when executing those
instructions

Same with memory, hard drive, network card etc



Virtualization

* When an application is run inside the “guest”
OS running in the VM, the VM emulates the
process of the OS as well as the application



Virtualization

Useful for sandboxing, testing, backup
Suppose you have a new OS to test

Or trying to add a new component to the OS,
such as a new device driver

Running on actual hardware and having it crash is
a lot of hassle to mange, reboot etc

VM gives a nice way to test

Also, you don’t have to waste an entire machine
just because you are playing with the OS!



Virtualization

VM gives a nice way to test

Easy to modify the executable code and run
again

Since everything is just variables in the VM’s
memory, the VM can write all this to a file,

which can be used to debug and find exactly
what happened

In general, VMs can store “snapshots” for
analysis and backup



Virtualization

VM gives a nice way to test

Easy to modify the executable code and run
again

Since everything is just variables in the VM’s
memory, the VM can write all this to a file,

which can be used to debug and find exactly
what happened

In general, VMs can store “snapshots” for
analysis and backup



Virtualization and distributed
computing
Consider a server farm

Many different servers are running

Instead of giving a physical server to each,
many server farms consist of real servers
running virtual machines

For example, renting a server to host a web
site is likely to give you a VM based server



Virtualization and distributed
computing

* Advantages: more flexibility

— Multiple VMs on same computer
* Need fewer physical machines

— Easier to turn on/off
— Easier to backup

— VMs can be moved from one computer to another
while preserving state

e Useful when the work load changes, some servers need
more computation, others need less..



Virtualization and distributed
computing
This is not a good strategy for CPU intensive
computation such a large data mining

Because running a large computation in a
virtual machine is inefficient

However, many systems need computation
running all the time, but not so intensively

Virtualization is most useful when flexibility is
critical



Virtualization and distributed
computing

 Hardware -> OS -> VMapp -> VOS ->
Vapp ->thread



Virtualization

Server farms and clusters
Cloud computing
Dynamic resource usage

Testing



Some current trends in Distributed
computing

* Mobile
— Heavily contested area
— Adaptation to mobility
— Harder to network when moving
— Adaptation to low energy system
— Different style of user interaction

— Needs better synchronization across multiple
mobile user devices



Some current trends in Distributed
computing

* Sensors
— For sensor networks
— TinyQOS§, LiteOS, Contiki
— Small, low power sensor devices
— Needs efficient operation

— Needs specialization to process and handle sensor

data and related operations in place of application
interface



Some current trends in Distributed
computing

* Embedded systems
— Computers all around us, in every device/machine

— Needs OS and Distributed computing, since they
need to communicate with each-other

— Adaptation to low power, low resource
environment

— Has to run without supervision/interaction



