
Distributed
Systems

Rik Sarkar
James Cheney

Global State & Distributed Debugging
February 3, 2014

February 3, 2014DS

Global State:
Consistent Cuts

• The global state is the combination of all process states and
the states of the communication channels at an instant in time

• So, if we had synchronized clocks, we could agree on a time for each
process to record its state

• Since we cannot "stop time" to observe the actual global state,
we attempt to find possible global state(s)

• A cut is a collection of prefix of the (combined) histories of the
processes

• partitioning all events into those occurring "before" and "after" the cut

• The goal is to assemble a meaningful global state from the the
local states of processes

• recorded at (possibly) different but concurrent times

February 3, 2014DS

Consistent Cuts

• A consistent cut is one which does not violate the happens-before relation →

• If e1 → e2 and e2 is in cut then e1 is in cut. That is:

• both e1 and e2 are in the cut or

• both e1 and e2 are after the cut or

• e1 is in the cut and e2 is after the cut

• but not e1 is after the cut and e2 is in the cut

p1

p2

e01 e11 e21 e31

e02 e12 e22

February 3, 2014DS

Consistent Cuts

• A consistent cut is one which does not violate the happens-before relation →

• If e1 → e2 and e2 is in cut then e1 is in cut. That is:

• both e1 and e2 are in the cut or

• both e1 and e2 are after the cut or

• e1 is in the cut and e2 is after the cut

• but not e1 is after the cut and e2 is in the cut

p1

p2

e01 e11 e21 e31

e02 e12 e22

inconsistent
cut

February 3, 2014DS

Consistent Cuts

• A consistent cut is one which does not violate the happens-before relation →

• If e1 → e2 and e2 is in cut then e1 is in cut. That is:

• both e1 and e2 are in the cut or

• both e1 and e2 are after the cut or

• e1 is in the cut and e2 is after the cut

• but not e1 is after the cut and e2 is in the cut

p1

p2

e01 e11 e21 e31

e02 e12 e22

consistent
cut

February 3, 2014DS

Runs and
Linearizations

• A consistent global state is one which corresponds to a
consistent cut

• Corresponds to a frontier: a set of n mutually concurrent events, one
from each process P1 ... Pn

• C = {e1,...,en} with ei || ej whenever i ≠ j

• A “run” is a total ordering of all events in a global history
which is consistent with the local history of each process

• A “linearization” is a total ordering of all events in the global
history which is consistent with the happens-before relation →

• So all linearizations are also runs

• Not all runs pass through consistent global states but all
linearizations pass only through consistent global states

February 3, 2014DS

Global State:
Safety and Liveness
• When we attempt to examine the global state, we are

often concerned with whether or not a property holds

• Some properties, B, are "bad" properties we hope
never hold

• and some properties, G, are "good" properties we
hope always hold

• Safety property: a bad property B does not hold for
any reachable state

• Liveness property: that a good property G always
(eventually) holds for all reachable states

February 3, 2014DS

Global State:
Stable and Unstable properties
• Some properties we wish to establish are stable

properties

• Such properties may never become true, but once they do they
remain true forever

• Consider our four example problems:

• Garbage is stable: once an object has no valid references (at a
process or in transit) will never have any valid references

• Deadlock is stable: once a set of processes are deadlocked
they will always be deadlocked without external intervention

• Termination is stable: once a set of processes have terminated
they will remain terminated without external intervention

• Debugging is not really a property but the properties we may
look for whilst debugging are typically non-stable

February 3, 2014DS

Global State:
Chandy and Lamport
• Many useful properties are stable

• Such properties may never become true, but once they
do they remain true

• Our four example properties:

• Garbage is stable: once an object has no valid references (at a
process or in transit) will never have any valid references

• Deadlock is stable: once a set of processes are deadlocked
they will always be deadlocked without external intervention

• Termination is stable: once a set of processes have terminated
they will remain terminated without external intervention

• Debugging is not really a property but the properties we may
look for whilst debugging are likely non-stable

February 3, 2014DS

Assumptions

February 3, 2014DS

Assumptions
• There is a path between any two pairs of processes, in

both directions

• Any process may initiate a global snapshot at any time

• The processes may continue their execution and send/
receive normal messages whilst the snapshot takes
place

February 3, 2014DS

Assumptions
• There is a path between any two pairs of processes, in

both directions

• Any process may initiate a global snapshot at any time

• The processes may continue their execution and send/
receive normal messages whilst the snapshot takes
place

• Neither channels nor processes fail

• Communication is reliable: every message that is sent
arrives at its destination exactly once (no repeats)

• Channels are unidirectional and provide FIFO-ordered
message delivery.

February 3, 2014DS

Algorithm: Sender
Sending rule for process Pi

1. After Pi receives marker and has recorded its state:

2. Pi sends a marker message for each outgoing channel c

• before it sends any other messages over c

• including the channel that Pi received mark from

Global State — Chandy and Lamport

Algorithm — Sender
Sending rule for process p

i

1. After p
i

has recorded its state:

2. p
i

sends a marker message for each outgoing channel c

3. before it sends any other messages over c

February 3, 2014DS

Algorithm: Receiver
Receiving rule for process Pi

1. On receipt of a marker message over channel c:

2. if Pi has not yet recorded state:

• record process state now

• record the state of c as the empty set

• turn on recording of messages arriving on all other
channels

3. else

• record the state of c as the set of messages it has recorded
since Pi first recorded its state

February 3, 2014DS

Example

• We begin in this global state, where both channels
are empty, the states of the processes are as shown,
but we say nothing about what has gone before.

Global State — Chandy and Lamport Example

We begin in this global state, where both channels are empty, the
states of the processes are as shown, but we say nothing about
what has gone before.

February 3, 2014DS

Example

• P1 decides to begin the snapshot algorithm and
sends a Marker message over channel 1 to P2.

• It then decides to send a request for 10 items
at $10 each.

P1 ($1000,0)

Global State — Chandy and Lamport Example

The left process decides to begin the snapshot algorithm and sends
a Marker message over channel 1 to the left process. It then
decides to send a request for 10 items at $10 each.

February 3, 2014DS

Example

• Meanwhile, P2 responds to an earlier
request and sends 5 items to P1 over
channel 2.

Global State — Chandy and Lamport Example

Meanwhile, the right process responds to an earlier request and
sends 5 items to the left process over channel 2.

P1 ($1000,0)

February 3, 2014DS

Example

• P2 receives the Marker message, records its state and
sends P1 a Marker message over channel 2.

• When P1 receives this Marker message it records the state
of channel 2 as containing the 5 items it has received
since recording its own state.

P1 ($1000,0)

P2: ($50,1995)
Ch 1: empty

Ch 2: Five items

Global State — Chandy and Lamport Example

The final recorded state is:
Left Process $1000, 0
Right Process $50, 1995
Channel 1 empty
Channel 2 Five Items

February 3, 2014DS

Example
Global State — Chandy and Lamport Example

The final recorded state is:
Left Process $1000, 0
Right Process $50, 1995
Channel 1 empty
Channel 2 Five Items

P1 ($1000,0)

P2: ($50,1995)
Ch 1: empty

Ch 2: Five items

Notice that (in this story) P2 didn't send
"Five items" until after P1 sent marker!

But there is no way to know this -
the events are concurrent

February 3, 2014DS

Reachability
• The cut found by the Chandy and Lamport algorithm is always a

consistent cut

• This means that the global state which is characterized by the
algorithm is a consistent (possible) global state

• Though it may not be one that ever "actually" occurred

• However, we can define a reachability relationship:

• between the initial, observed and final global states when the algorithm is run

• Assume that the events actually occurred in a global order H = e1,e2 ...

• Let Sinit be the global state immediately before the algorithm commences and Sfinal
be the global state immediately after it terminates. Finally Ssnap is the recorded
global state

• We can find a permutation of H called H′ which contains all three states: Sinit,
Ssnap and Sfinal

• Does not break the happens-before relationship on the events in H

February 3, 2014DS

Chandy and Lamport:
Reachability

• It may be that there are two events in H, en and en+1 such that en is a post-snap
event and en+1 is a pre-snap event

• However we can swap the order of en and en+1 since it cannot be that en → en+1

• We continue to swap adjacent pairs of events until all pre-snap events are ordered
before all post-snap events. This gives us the the linearization H′

• The reachability property of the snapshot algorithm is useful for recording stable
properties

• true in Ssnap ⟹ true in Sinit; false in Ssnap ⟹ false in Sinit

• However any non-stable predicate which is true in the snapshot may or may not be
true in any other state

Global State — Chandy and Lamport — Reachability

I It may be that there are two events in Sys, e
n

and e
n+1

such
that e

n

is a post-snap event and e
n+1

is a pre-snap event
I However we can swap the order of e

n

and e
n+1

since it cannot
be that e

n

! e
n+1

I We continue to swap adjacent pairs of events until all
pre-snap events are ordered before all post-snap events. This
gives us the the linearisation Sys 0

I The reachability property of the snapshot algorithm is useful
for recording stable properties

I However any non-stable predicate which is True in the
snapshot may or may not be true in any other state

I Since the snapshot may not have actually occured

February 3, 2014DS

Chandy and Lamport:
Use Cases

• No work which depends upon the global state is done
until the snapshot has been gathered

• Algorithm is therefore useful for:

• Evaluating after infrequent changes

• Stable properties, since the property that you detect to have
been true when the snapshot was taken will still be true
once the snapshot has been gathered

• Properties that have a single yes/no answer (Garbage
Collection) rather than a range of increasingly appropriate
answers (e.g. routing)

• Properties that need not be acted upon immediately, again for
example garbage collection.

February 3, 2014DS

Summary
• We looked at Chandy and Lamport’s

algorithm for recording a global snapshot
of the system

• We defined a notion of reachability
showing that the snapshot can be
obtained by permuting concurrent events

• Thus, the snapshot is useful for detecting
stable properties

February 3, 2014DS

Distributed
debugging

• Distributed debugging was the application of
our four example applications that stood out
for being concerned with unstable properties

• This is a problem for our global snap-shot
technique since its main usefulness is derived
from our reachability relation which in turn
means little for a non-stable property

• Distributed debugging is in a sense a
combination of logical/vector clocks and
global snapshots

February 3, 2014DS

Example Non-Stable
Condition

• Suppose we are implementing an online poker game

• There is a process representing each player and one
representing the pot in the centre of the table

• Players can “send chips” to the pot, and once winners
have been decided the pot may send chips back to
some of the players.

• We wish to make sure that the total amount of chips in
the game never exceeds the initial amount

• It may be less than the initial amount since some chips
may be in transit between a player and the centre pot.

• But it cannot be more than the initial amount.

February 3, 2014DS

Distributed
debugging

• Suppose that we have a history H of events e1,...,en

• H = (e1,...,en) is the true order of events as they
actually occurred in our system

• Recall that a run is any ordering of those events in
which each event occurs exactly once

• A linearization is a consistent run

• A consistent run is one in which the “happens-before” relation
is satisfied

• If ei → ej then any linearisation (or consistent run) will order ei
before ej.

• So all linearisations only pass through consistent states

February 3, 2014DS

The possibly relation
• Any linearization Lin of our history of events H must pass

through only consistent states

• A property P that is true in any state through which Lin passes,
was possibly true at some global state through which H passed

• If this is the case for some property p and some linearisation we
say possibly(p)

• Note: suppose we had taken a global snapshot during the set of
events H to determine if the property p was true and determined
that it was: Snap(p) evaluates to true.

• This would imply that p was possible: Snap(p) ⟹ possibly(p)

• However the reverse is not true:

• possibly(p) ⇏ Snap(p)

February 3, 2014DS

The definitely
relation

• The sister relation to the possibly relation is the definitely relation

• This states that for any linearization Lin of H, Lin must pass
through some consistent global state S for which the candidate
property is true

• Since H is a linearization of itself, then the candidate property
was certainly true at some point in the history of events.
More formally:

• The statement possibly(p) means that there is a consistent global
state S through which at least one linearization of H passes such
that S(p) is true.

• The statement definitely(p) means that for all linearisations L of
H, there is a consistent global state S through which L passes
such that S(p) is true

February 3, 2014DS

Possibly vs Definitely
• If p is impossible then ¬p definitely holds

• ¬(possibly(p)) ⟹ definitely(¬p)

• But, from definitely(¬p) we cannot conclude
¬(possibly(p)).

• definitely(¬p) means that there is at least one state in all
linearizations of H such that p is not true.

• ¬(possibly(p)) however would require that ¬(p) was true in all
states in all linearizations

• Also: definitely(p) and definitely(¬p) may be true
simultaneously but possibly(p) and ¬(possibly(p))
cannot.

• consider blinking light, p = "light is on"

February 3, 2014DS

Distributed Debugging:
Basic Outline

• The processes must all send messages
recording their local state to a master process

• timestamping each state with vector clock value

• The master process collates these and
extracts the consistent global states

• using timestamps to reconstruct happens-before
order

• From this information the possibly(p) and
definitely(p) relations may be computed.

February 3, 2014DS

Collecting the Local
States

• Each process sends their initial state to the master process in a
state message and thereafter periodically send their local state.

• Preparing and sending these messages may delay the normal
operation of the distributed system but does not otherwise affect it

• so debugging may be turned on and off.

• “Periodically” is better defined in terms of the predicate for which
we are debugging.

• We only need to send state messages to the master process initially and
whenever our local state changes

• We can further restrict to local state changes that affect the predicate in
question.

• We can concurrently check for separate predicates as well by
marking our state messages appropriately.

February 3, 2014DS

State Messages,
Timestamps

• The individual processes send states to the
master

• Each state message is timestamped with the
Vector clock value at the local process sending
the state message: (si , V(si))

• If S = {(s1,V(s1)),...(sn,V(sn))} is a timestamped
set of state messages received by the master
process

• Then S is a consistent global state iff:

• Vi[i] ≥ Vj[i] ∀i, j ∈ {1, ..., N}

February 3, 2014DS

Assembled Consistent
Global States

• S is a consistent global state iff:

• Vi[i] ≥ Vj[i] ∀i, j ∈ {1, ..., N}

• This says that the number of Pi’s events known
at Pj when it sent sj is no more than the number
of events that had occurred at Pi when it sent si.

• In other words:

• if the state of one process depends upon another
(according to happened-before ordering),

• then the global state also encompasses the state upon
which it depends.

February 3, 2014DS

Simple case
• Imagine the simplest case of 2 communicating

processes.

• A plausible global state is Sxy

• The subscripts x and y refer to the number of
events which have occurred at the particular
process.

• The “level” of a given state is x + y, which is
number of events which have occurred globally
to give rise to the particular global state S.

February 3, 2014DS

Assembling consistent
global states

S00

p1

p2

10 20 30 43

21 22 23

Note: the "global states" include the current process local states in
each consistent cut (variables x, y)

Suppose property p(x,y) = "x = y"

x=1 x=2 x=3 x=4

y=5 y=3 y=2 y=2

February 3, 2014DS

Assembling consistent
global states

S00

S10

S20

p1

p2

10 20 30 43

21 22 23

Note: the "global states" include the current process local states in
each consistent cut (variables x, y)

Suppose property p(x,y) = "x = y"

x=1 x=2 x=3 x=4

y=5 y=3 y=2 y=2

February 3, 2014DS

Assembling consistent
global states

S00

S10

S20

S21

S22

S23

p1

p2

10 20 30 43

21 22 23

Note: the "global states" include the current process local states in
each consistent cut (variables x, y)

Suppose property p(x,y) = "x = y"

x=1 x=2 x=3 x=4

y=5 y=3 y=2 y=2

February 3, 2014DS

Assembling consistent
global states

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

p1

p2

10 20 30 43

21 22 23

Note: the "global states" include the current process local states in
each consistent cut (variables x, y)

Suppose property p(x,y) = "x = y"

x=1 x=2 x=3 x=4

y=5 y=3 y=2 y=2

February 3, 2014DS

Assembling consistent
global states

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

p1

p2

10 20 30 43

21 22 23

Note: the "global states" include the current process local states in
each consistent cut (variables x, y)

Suppose property p(x,y) = "x = y"

x=1 x=2 x=3 x=4

y=5 y=3 y=2 y=2

February 3, 2014DS

Evaluating Possibly
A state S' = {s0x0' ,...sNxN' } is reachable
from a state S ={sx00,...sxNN} if:

• S′ is a consistent state

• level(S') = 1 + level(S) and:

• xi′ = xi or xi′ =1+xi ∀ 0≤i≤N

• That is, S' is the result of adding exactly
one possible "next" event to S

• leading to a consistent cut/state

February 3, 2014DS

Evaluating Possibly
Level = 0

States = {(s00,...s0N)}

while (States is not empty)

Level = Level + 1

Reachable = {}

for S’ where level(S’) = Level

if S’ is reachable from some state in States

then if p(S’) then output "possibly(p) is True" and quit

 else place S’ in Reachable

output "possibly(p) is false"

February 3, 2014DS

Evaluating Definitely
• Note: First check if p true in the initial state, if so output "definitely(p) is true"

Level = 0

States = {(s00,...s0N)}

while (States is not empty)
Level = Level + 1

ReachableFalse = {}

for S’ where level(S’) = Level

if S’ is reachable from some state in States

then if ¬(p(S′)) then place S’ in ReachableFalse

States = ReachableFalse

if Level is the maximum level recorded

then output "definitely(p) is false"

else output "definitely(p) is true"

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

false

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

false

false

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

false

false

false

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

false

false

false

false

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

false

false

false

false
true

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

false

false

false

false
true

Possibly(p)
is True

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

false

false

false

false
true

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

false

false

false

false
true

true

February 3, 2014DS

Evaluating Possibly,
Definitely

S00

S10

S20

S30
S21

S31
S22

S32 S23

S33

S43

Level 0

1

2

3

4

5

6

7

false

false

false

false
true

true

Definitely(p)
is True

February 3, 2014DS

Evaluating Possibly
and Definitely

• Note that the number of states that must be
evaluated is potentially huge

• In the worst case, there is no communication
between processes, and the property is False for all
states

• We must evaluate all permutations of states in
which each local history is preserved

• worst-case exponential time (NP-complete in general)

• This system therefore works better if there is a lot of
communication and few local updates (which affect
the predicate under investigation)

February 3, 2014DS

Distributed Debugging
(Synchronous case)

• We have so far considered debugging within an asynchronous
system

• Our notion of a consistent global state is one which could potentially
have occurred

• In a synchronous system we have a little more information to make
that judgement

• Suppose each process has a clock internally synchronized with the
each other to a bound of D.

• With each state message, each process additionally time stamps the
message with their local time at which the state was observed.

• For a single process with two state messages (sxi,Vi,ti) and (sx+1i, V'i,
t′i) we know that the local state sxi was valid between the time
interval:

• ti − D to t'i + D

February 3, 2014DS

Distributed Debugging
(Synchronous case)

• Recall our condition for a consistent global state:

• Vi[i] ≥ Vj[i] ∀i, j ∈ {1, ...,N}

• We can add to that:

• ti − D ≤ tj ≤ t'i + D and vice versa forall i,j

• This can help eliminate impossible global states

• improving performance and making "possibly" more precise

• But if there is a lot of communication (or D is large)
then we may not prune the number of states very
much

February 3, 2014DS

Summary
• Each process sends state update messages to a monitor

process whenever a significant event occurs.

• From this the monitor can build up a set of consistent
global states which may have occurred in the true
history of events

• This can be used to evaluate whether some predicate
was possibly true at some point, or definitely true at
some point

• This can lead to a combinatorial explosion if there is a
lot of concurrency

• synchronized clocks can be used to decrease the number of
concurrent states to consider

