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Introduction 
• In this part of the course we will cover:

• Why time is such an issue for distributed 
computing

• The problem of maintaining a global 
state in a distributed system

• Consequences of these two main ideas

• Methods to get around these problems
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Clocks
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Global notion of time
• Einstein showed that the speed of light is constant for all observers 

regardless of their own velocity

• He (and others) have shown that this forced several other (sometimes 
counter-intuitive) properties including:

1. length contraction

2. time dilation

3. relativity of simultaneity

• Contradicting the classical notion that the duration of the time interval 
between two events is equal for all observers 

• It is impossible to say whether two events occur at the same time, if 
those two events are separated by space 

• A drum beat in Japan and a car crash in Brazil 

• However, if the two events are causally connected — if A causes B — the 
RoS preserves the causal order

Global Notion of Time

I Einstein showed that the speed of light is constant
for all observers regardless of their own velocity

I He (and others) have shown that this forced several other
(sometimes counter-intuitive) properties including:

1. length contraction
2. time dilation
3. relativity of simultaneity

I Contradicting the classical notion that the duration of the
time interval between two events is equal for all observers

I It is impossible to say whether two events occur at the same
time, if those two events are separated by space

I A drum beat in Japan and a car crash in Brazil
I However, if the two events are causally connected — if A

causes B — the RoS preserves the causal order
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Global notion of time

• However, if the two events are causally connected — 
if A causes B — the relativity of simultaneity 
preserves the causal order

• In this case, the flash of light happens before the 
light reaches either end of the carriage for all 
observers

Global Notion of Time

Observer on Train Observer on Platform

I However, if the two events are causally connected — if A
causes B — the relativity of simultaneity preserves the causal
order

I In this case, the flash of light happens before the light reaches
either end of the carriage for all observers
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Global Notion of 
Time

• We operate as if this were not true, that is, as if there 
were some global notion of time 

• People may tell you that this is because: 

• On the scale of the differences in our frames of 
references, the effect of relativity is negligible 

• But that’s not really why we operate as if there was a 
global notion of time 

• Even if our theoretical clocks are well synchronized, or 
mechanical ones are not 

• We just accept this inherent inaccuracy & build that into 
our (social) protocols 



January 27, 2014DS

Physical Clocks
• Computer clocks tend to rely on the oscillations occuring 

in a crystal 

• The difference between the instantaneous readings of 
two separate clocks is termed their “skew” 

• The “drift” between any two clocks is the difference in 
the rates at which they are progressing. The rate of 
change of the skew 

• The drift rate of a given clock is the drift from a nominal 
“perfect” clock, for quartz crystal clocks this is about 
10−6 

• Meaning it will drift from a perfect clock by about 1 
second every 1 million seconds — 11 and a half days. 
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Coordinated Universal 
Time and French

• The most accurate clocks are based on atomic oscillators 

• Atomic clocks are used as the basis for the international 
Standard International Atomic Time 

• Abbreviated to TAI from the French Temps Atomique 
International 

• Since 1967 a standard second is defined as 9,192,631,770 periods of 
transition between the two hyperfine levels of the ground state of 
Cesium-133 (Cs133). 

• Time was originally bound to astronomical time, but astronomical 
and atomic time tend to get out of step 

• Coordinated Universal Time — basically the same as TAI but with 
leap seconds inserted 

• Abbreviated to UTC again from the French Temps Universel 
Coordonné
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Correctness of 
Clocks

• What does it mean for a clock to be correct? 

• The operating system reads the node’s hardware clock value, H(t), 
scales it and adds an offset so as to produce a software clock C(t) = 
αH(t) + β which measures real, physical time t 

• Suppose we have two real times t and t′ such that t < t′ 

• A physical clock, H, is correct with respect to a given bound 
‘p’ if: 

(1−p)(t′ −t) ≤ H(t′)−H(t) ≤ (1+p)(t′ −t) 

• (t ′ − t) — The true length of the interval

• H(t′)−H(t) — The measured length of the interval

• (1−p)(t′−t) — The smallest acceptable length of the interval 

• (1+p)(t′−t)  — The largest acceptable length of the interval 
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Correctness of 
Clocks

• (1−p)(t′−t) ≤ H(t′)−H(t) ≤ (1+p)(t′−t)

• An important feature of this definition is 
that it is monotonic 

• Meaning that: 

• If t<t′ then H(t)<H(t′) 

• Assuming that t < t′ with respect to the 
precision of the hardware clock 
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Monotonicity
• What happens when a clock is 

determined to be running fast?

• We could just set the clock back:

• but that would break monotonicity

• Instead, we retain monotonicity:

• Ci(t)=αH(t)+β

• decreasing β such that Ci(t) ≤ Ci(t′) for all t < 
t′
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External vs Internal 
Synchronization

• Intuitively, multiple clocks may be synchronized with respect to 
each other, or with respect to an external source. 

• Formally, for a synchronization bound D > 0 and external source 
S: 

• Internal Synchronization: |Ci(t)−Cj(t)|< D 

• No two clocks disagree by D or more 

• External Synchronization: |Ci(t)−S(t)|<D 

• No clock disagrees with external source S by D or more

• Internally synchronized clocks may not be very accurate at all 
with respect to some external source 

• Clocks which are externally synchronized to a bound of D though 
are automatically internally synchronized to a bound of 2 × D. 
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Synchronizing clocks 
(synchronous case)

• Imagine trying to synchronize watches using text messaging

• Except that you have bounds for how long a text message will take

• How would you do this?

1. Mario sends the time t on his watch to Luigi in a message m 

2. Luigi should set his watch to t + Ttrans where Ttrans is the time taken to transmit and 
receive the message m 

3. Unfortunately Ttrans is not known exactly

4. We do know that min ≤ Ttrans ≤ max 

5. We can therefore achieve a bound of u = max − min if the Luigi sets his watch to t + min 
or t + max 

6. We can do a bit better and achieve a bound of u = (max−min)/2 if Luigi sets his watch to 
t + (max+min)/2

7. More generally if there are N clocks (Mario, Luigi, Peach, Toad, ...) we can achieve a 
bound of (max−min)(1−1/n)  

8. Or more simply we make Mario an external source and the bound is then max − min (or 
2 × (max−min)/2) 
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Cristian’s Method
• The previous method does not work where we have no upper 

bound on message delivery time, i.e. in an asynchronous 
system 

• Cristian’s method is a method to synchronize clocks to an 
external source. 

• This could be used to provide external or internal 
synchronization as before, depending on whether the source 
is itself externally synchronized or not. 

• The key idea is that while we might not have an upper 
bound on how long a single message takes, we can have an 
upper bound on how long a round-trip took. 

• However it requires that the round-trip time is sufficiently 
short as compared to the required accuracy. 
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Cristian’s Method
• Luigi sends Mario a message mr 

requesting the current time, sent at 
time Tsent according to Luigi’s clock 

• Mario responds with his current time in 
the message mt. 

• Luigi receives Mario’s time t in 
message mt at time Trec 

• according to his own clock the round trip 
took Tround = Trec − Tsent 

• Luigi then sets clock to t + Tround/2 

• Assumes that the elapsed time was 
split evenly

• (so may be less accurate in case of 
asymmetric latency)

mr

Tsent

Trec

t

T = t + Tround/2

mt
Tround
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Cristian’s Method
• How accurate is this? 

• We often don’t have accurate upper bounds for message delivery 
times but frequently we can at least guess conservative lower bounds 

• Assume that messages take at least min time to be delivered 

• The earliest time at which Mario could have placed his time into the 
response message mt is min after Luigi sent his request message mr. 

• The latest time at which Mario could have done this was min before 
Luigi receives the response message mt. 

• The time on Mario’s watch when Luigi receives the response mt is: 

• At least t + min 

• At most t + Tround −min 

• Hence the width is Tround − (2 × min) 

• The accuracy is therefore Tround/2 − min 
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The Berkeley 
Algorithm

• Like Cristian’s algorithm this provides either external 
synchronization to a known server, or internal synchronization via 
choosing one of the players to be the master 

• Unlike Cristian’s algorithm though, the master in this case does 
not wait for requests from the other clocks to be synchronized, 
rather it periodically polls the other clocks. 

• The others then reply with a message containing their current 
time. 

• The master estimates the slaves current times using the round 
trip time in a similar way to Cristian’s algorithm 

• Then averages those clock readings together with its own to determine 
what should be the current time. 

• Finally replies to each of the other players with the amount by which they 
should adjust their clocks 
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The Berkeley 
Algorithm

poll

M S1 Sn

poll

...

Ti = ti + (ti'-t0)/2
...
T = (tn' + T1 + ... + Tn)/(n+1)
ΔTi = Ti - T
...

ΔTnΔT1

t0

t1

tn
t1'

tn'
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The Berkeley 
Algorithm

• If a straightforward average is taken, a 
faulty clock could shift this average by a 
large amount

• therefore a fault tolerant average is taken 

• This just averages all the clocks that do not 
differ by a chosen maximum amount M

• (discarding clocks that are off by more than M)

• Synchronized ~15 computers to within 
20-25ms
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Network Time 
Protocol

• Network Time Protocol (actually abbreviated was NTP) is designed 
to allow clients to synchronize with UTC over the Internet. 

• NTP is provided by a network of servers located across the 
Internet. 

• Primary servers are connected directly to a time source such as a 
radio clock receiving UTC. 

• Other servers are connected in a tree, with their strata determined 
by how many branches are between them and a primary server 

• Strata N servers synchronize with Strata N - 1 servers 

• Eventually a server is within a user’s workstation 

• Errors may be introduced at each level of synchronization and 
they are cumulative, so the higher the strata number the less 
accurate is the server 
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Network Time 
Protocol

• Note: this picture does not show synchronization 
between servers at the same strata, but this does occur

Network Time Protocol

Note: this picture does not show synchronisation between servers
at the same strata, but this does occur
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Mario

Network Time 
Protocol

• Synchronization between strata is 
pairwise

• Uses multiple rounds of messages

Luigi

Ti−3 Ti−2 Ti−1 Ti

mr mt

t t'
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Pairwise synchronization

• Similar to Cristian’s method, however: 

• Four times are recorded as measured by the clock of the process at 
which the event occurs: 

1. Ti−3 — Time of sending of the request message mr 

2. Ti−2 — Time of receiving of the request message mr 

3. Ti−1 — Time of sending of the response message mt 

4. Ti — Time of receiving of the response message mt 

• So if Luigi is requesting the time from Mario, then Ti−3  and Ti are 
recorded by Luigi and Ti-2 and Ti-1 are recorded by Mario 

• Note that because Mario records the time at which the request 
message was received and the time at which the response message 
is sent, there can be a non-negligible delay between both 

• In particular then messages may be dropped 
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Network Time 
Protocol

• If we assume that the true (unknown) offset between 
the two clocks is Otrue: 

• And that the actual transmission times for the messages 
mr and mt are t and t′ respectively then: 

Ti−2 = Ti−3 + t + Otrue   and   Ti = Ti−1 + t′ − Otrue 

• Tround is the measure of accuracy (based on how long 
the messages were in transit) 

Tround = (t+t′) = (Ti −Ti−3)−(Ti−1−Ti−2) 

• Oguess is the guess as to the offset 

Oguess = [(Ti−2−Ti−3)+(Ti−1−Ti)] / 2 
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Network Time 
Protocol

• This is the non-trivial line:

Oguess = [(Ti−2−Ti−3)+(Ti−1−Ti)]/2

Ti−2−Ti−3 = t+Otrue

Ti−1−Ti = Otrue−t′ 

Hence Oguess = [(t+Otrue) + (Otrue−t′)] / 2 

                   = [(t−t′)+(2×Otrue)]/2 = (t−t')/2 + Otrue

That is: Otrue = Oguess + (t−t′) / 2

• Since we know that Tround > |t − t′|:

Oguess − Tround ≤ Otrue ≤ Oguess + Tround 
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Network Time Protocol
(modes)

1. Multicast (broadcast to group) mode

• Not considered very accurate 

• Intended for use on a high-speed LAN 

• Can be accurate enough nonetheless for some purposes 

2. Procedure call mode 

• Similar to Cristian’s method 

• Servers respond to requests from higher-strata servers 

• Who use round-trip times to calculate the current time to some degree of accuracy 

• Used for example in network file servers which wish to keep as accurate as possible file 
access times 

3. Symmetric mode 

• Used where the highest accuracies are required 

• In particular between servers nearest the primary sources, that is the lower strata servers 

• Essentially similar to procedure-call mode except that the communicating servers retain 
timing information to improve their accuracy over time 
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Aside: Message reliability
and TCP vs. UDP

• We will consider a number of different algorithms/protocols

• making different assumptions about process failure and reliability of 
messages

• Transmission Control Protocol (TCP)

• reliable, first-in-first-out streams

• most Internet traffic (SMTP (mail), HTTP (Web), etc.)

• but carries overhead due to latency, error detection/correction

• User Datagram Protocol (UDP)

• messages may be dropped, reordered; error detection only

• useful for faster traffic where reliability less important (or dealt with 
using other algorithms)

• Including NTP, DNS, voice, video, games
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Network Time 
Protocol

• In all three modes messages are delivered using the 
standard UDP (unreliable, broadcast) protocol 

• Hence message delivery is unreliable 

• At the higher strata servers can synchronize to high 
degree of accuracy over time 

• But in general NTP is useful for synchronizing accurately 
to UTC, whereby accurate is at the human level of 
accuracy 

• Wall clocks, clocks at stations etc 

• In summary: we can synchronize clocks to a bounded 
level of accuracy, but for many applications the bound is 
simply not tight enough
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Summary
• We noted that even in the real world there is no global notion of time 

• We extended this to computer systems noting that the clocks 
associated with separate machines are subject to differences between 
them known as the skew and the drift. 

• We nevertheless described algorithms for attempting the 
synchronization between remote computers 

• Cristian’s method 

• The Berkeley Algorithm 

• Pairwise synchronization in NTP 

• Next time:

• Despite these algorithms to synchronize clocks it is still impossible to determine 
for two arbitrary events which occurred before the other. 

• We will look at ways in which we can impose a meaningful order on remote 
events even without perfect synchronization


