Distributed Systems

Rik Sarkar
James Cheney

University of Edinburgh
Spring 2014

Shortest (least weight) paths with BFS
tree and edge weights

Bellman-Ford algorithm

Each node p has a variable dist representing
distance to root. Initially p.dist =co,
root.dist =0

In each round, each node sends its dist to all
neighbors

If for neighbor g of p: g.dist + w(p,q) < p.dist
— Then set p.dist = q.dist + w(p,q)

Shortest (least weight) paths with BFS

tree and edge weights
 Complexity
— (when all edge weights are positive)
— Time: n-1 = O(n)
— Message: O(n* | E|)

* Also works for directed graphs

Weighed diameter

* |[n a weighted graph, the weighted diameter
or weight-diameter is the

* Largest weight of the least weight path
between 2 nodes

Bit complexity of communicaiton

We have assumed that each communication is 1 message, and we
counted the messages

Sometimes, communication is evaluated by bit complexity — the
number of bits communicated

This is different from message complexity because a message may
have number of bits that depend on n or |E| or Diameter

For example, A routing table may be sent in a message, and a
routing table has size O(n)

In practice, data of size O(log n) can be assumed to fit in a single
message. E.g. node id

Data of size polynomial of n: O(n), O(Vn) etc need corresponding
message sizes

Distributed Systems

Systems and models

Rik Sarkar
James Cheney

University of Edinburgh
Spring 2014

Models

Assumptions we make about the system
Necessary to reason about systems

Real world is too elaborate, too detailed

We must discard unnecessary details and focus on the
essentials

Sometimes we may not know details in advance, when
designing the system.

— Our design must be general enough that they do not
depend on these details

Models

No one right way to model

Always depends on the system and application in
guestion

Very often we do not know exactly where our

design will be used

— Try to make worst case assumptions that still give
reasonable performance

Today we discuss some elements of distributed

systems that must be modeled, and some
common aspects to keep in mind

Things to model

Hardware

Energy

Communication

Architecture: How software components are related
Failures

Computation

Time and synchronization

Security

Mobility

Hardware

* Heterogeneity: Different nodes may have different
properties
— Speed of CPU
— Memory
— Storage
— Polynomial of n memory/storage can be problematic

— We can:

* Try to model a few different types of nodes, specially when we
know exactly which nodes will be of what type. E.g. Hand built
cluster for a specific purpose

* Or we can assume all nodes to be low power. E.g. sensor networks

— In general, try to keep computation, memory and storage
requirement per node as low as possible

Energy

Important to prevent heating and to save battery
Computation and communication cost energy
In data centers processing “big data”

— Keeping consumption low is critical

— To keep down energy costs

— To keep heating under control
Google, Facebook spend millions on:

— Cooling

— Airflow

— Power distribution

— Measuring

— modeling

— Building data centers in the Arctic..

Energy

* |n mobile/senor devices
— Energy is stored in battery
— Consumption must be low to save to battery

* Design systems/algorithms to use less energy
* Understand and model energy usage to design
better systems/algorithms

— E.g. Energy consumption in wireless
communication has complex properties. Depends
on distance, interference, remaining battery etc..

Communication

* Each process may be in a different machine,
and require network to send message to

others

* Processes may be on the same computer
(different programs, or threads) and
communicate through shared memory.

— Faster and less costly communication

Communication

Communication model is possibly the most
important step affecting distributed design

* Broadcast (all nodes hear each message)

* Point to point communication between each pair
of nodes (complete graph)

* Network as a general graph

e Communication through shared memory
— For nodes on the same machine

Communication

 Network as a graph can be used to represent both
shared memory and message based communication

— E.g. we can put lower weights on shared memory
communication

— What are reasonable weights?
— Are negative weights permissible?

* Shared memory can be simulated

— For example everyone can have a copy of the memory,
that has to be updated on each event

— Not very efficient since n updates must be made each time

Communication

Broadcast not represented by a graph
We can draw a complete graph

— But this does not say that one transmission will
reach all neighbors

In practice, broadcast medium is still usually
used for point to point communication

So a graph is still a good representation

Point to point communication

A sends a message to B
How does A know that B received it?
B sends an acknowledgement

If A does not receive ack, A retransmits

The drawback of broadcast

* A sends a message to all neighbors
* A does not know if all neighbors received it

 What if all neighbors send acks?
— That costs n messages and time
— Defeats the point of broadcast

Broadcast

* Good for cases where individual messages are
not critical e.g. streaming video

* Bad for important messages

Communication: Overlay network

* We may sometimes ignore parts of the
network

— Nodes that carry messages but do not directly
participate
— Or edges that exist but we are not using

* Often used in peer-to-peer networks

Communication: Overlay network

E.g. We may ighore routers, we may ignore edges
that do not directly participate

We may include edges that do not exist in reality,
but are used in communication

Depends on application

The overlay may have no similarity to the
physical network

LAN LAN

Communication

 Remote procedure calls
— Process A calls a function f in the code of process B

— This is equivalent to A sending a specific type to
message to B, on reading which B decides to run the
function f

— RPCis a programming abstraction that makes some
types of code easier

— Does not change our fundamental concepts of a
distributed systems

Architectures

* Layered software:
— Different layers deal with different things

— Well defined tasks for layers, upper layer assumes
lower layer is doing its job

— E.g. network protocols

Architectures

* Client —server
— Servers do the computation
— Clients request computations

Architecture

* Peer to peer
— All nodes are equivalent (equal capabilities)
— Each can (does) as client as well as server

— May not be clear distinction between who is
requesting and who is performing tasks

— More general than client-server

Failures

* Nodes may fail
— Hardware failure
— Run out of energy or power failure
— Software failure (crash)
— Permanent

— Temporary (what happens when it restarts?
Recovers the state? Starts from initial state?)

— Model depends on system. E.g. different types of
failures occur with corresponding probabilities

Node failures

e Common abstract models

— Stopping failure: node just stops working

* May need assumptions about which computation/communication
it finishes before stopping

* May need assumption about neighbors knowing of failure

— Byzantine failure: node behaves as an adversary
* Imagine your enemy has taken control of the node
* |s trying to spoil your computation

* Nodes may fail individually
— E.g. each node fails with probability p
* Nodes may have correlated failure
— E.g. all nodes fail in a region (data center, sensor field)

Link/communication failure

* May be temporary/permanent

 May happen due to

— Hardware failure

— Noise: electronic devices (microwaves etc) may transmit radio
waves at similar frequencies and disrupt communication

— Interference: Other communicating nodes nearby may disrupt
communication
e Effects
— Channel silent and unusable (hardware failure)
— Channel active, but unusable due to noise and interference

— Channel active, but may contain erroneous message (may be
detected by error correcting codes)

Computation
* Synchronous:

— Operation in rounds

— In a round, a node performs some computation,
and then sends some messages

— All messages sent at the end of round x are
available to recipients at start of round x+1

e But not earlier

Computation

Communication
a1 1

Round 1 Round 2 Round 3

Communication

* Synchronous

— Can be implemented if message transmission time
is bounded by some constant say m

— Computation times for all nodes are bounded by
some constant c

— Clocks are synchronized
— Then set each round to be m+c in duration

Asynchronous Communication

* No synchronization or rounds
— Nodes compute at different and arbitrary speeds

— Messages proceed at different speeds: may be
arbitrarily delayed, may be received at any time

* Worst case model
— No assumption about speeds of processes or channel

— (But does not include communication/computation
errors)

Asynchronous Communication

* Harder to manage

— Message can arrive at any time after being sent,
must be handled suitably

— Possible to make some simplifying assumptions
E.g.:
* Channels are FIFO: order of messages on a channel are
preserved

* Some code blocks are atomic (not interrupted by
messages)

e Either communication or computation times bounded

Synchronous communication in Real
systems

Synchronous communication can be a fair model

Modern computers and networks are fast
— (though not arbitrarily fast)

Easier to design algorithms and analyze

Well designed algorithms are faster and more
efficient

Often can be adapted to asynchronous systems
— Often a starting point for design

Security

* |ssues:

— Unauthorized access, modification. Making systems
unavailable (DOS)

— Attack on one or more nodes
e Causing to it fail
* Read data
e Taking control to read future data, disrupt operation

— Attack on communication links/channel

* Block communication

* Read data in the channel (easy in wireless without
encyption)

e Corrupt data in the channel

Security

* Solutions usually have specific assumptions of
what the adversary can do

e E.g. If adversary has access to channel

— Cryptography may be able to prevent reading/
corrupting data

Mobility

* Movement makes it harder to design distributed
systems
— Communication is difficult

* Delays, lost messages
* Edge weights can change

— Applications that depend on location must adapt to
movement
* How do people move? What is a model of
movement?

— Not yet well understood

Modeling distributed systems

Many possibilities
Choose your assumptions carefully for your
problem

Pay close attention to what is known about
communication/network

Start with simpler models
— Usually more assumptions, fewer parameters

— See what can be achieved
— Then try to drop/relax assumptions

