Distributed Systems

Multicast and Agreement

Rik Sarkar
James Cheney

University of Edinburgh
Spring 2014



Recap: Leader election

» Strategy 1: use aggregation trees

* Strategy 2: Use aring
— Send messages in only one direction
— |ds propagate in only one direction
— Larger ids suppress smaller ids

* Strategy 3: Use aring
— Send messages in both direction
— Exponentially growing neighborhoods
— Larger ids suppress smaller ids



Strategy 4: Bully Algorithm

Assume:
— Each node knows the id of all nodes in the system (some may have failed)
— Synchronous operation

Node p decides to initiate election
p sends election message to all nodes with id > p.id
If p does not hear “I am alive message” from any node, p broadcasts a
message declaring itself as leader
Any working node g that receives election message from p, replies with
own id and “l am alive” message

— And starts an election (unless it is already in the process of an election)

Any node q that hears a lower id node being declared leader, starts a new
election



Strategy 4: Bully Algorithm

Assume:

— Each node knows the id of all nodes in the system
(some may have failed)

— Synchronous operation

Works even when processes fail
Works when (some) message deliveries fail.

What are the storage and message complexities?



Multicast

Send message to multiple nodes

A node can join a multicast group, and receives
all messages sent to that group

The sender sends only once: to the group address

The network takes care of delivering to all nodes
in the group

Note: groups are restricted to specific networks
such as LANs & WANSs

— Multicast in the university network will not reach
nodes outside the network




Multicast

* A special version of broadcast (restricted to a
subset of nodes)

* |na LAN

— Sender sends a broadcast
— Interested nodes accept the message others reject

* |In larger networks we can use a tree
— Remember trees can be used for broadcast
— Interested nodes join the tree, and thus get messages

— All nodes can use the same tree to multicast to the
same group



IP Multicast

IP has a specific multicast protocol

Addresses from 224.0.0.0 to 239.255.255.255 are reserved
for multicast

— They act as groups

— Some of these are reserved for specific multicast based
protocols

Any message sent to one of the addresses goes to all
processes subscribed to the group

— Must be in the same “network”

— Basically depends on how routers are configured

In a LAN, communication is broadcast

In more complex networks, tree-based protocols can be
used



IP Multicast

* Any process interested in joining a group
informs its OS

e The OS informs the “network”

— The network interface (LAN card) receives and
delivers group messages to the OS & process

— The router may need to be informed
— IGMP — Internet group management protocol



IP Multicast

Sender sends only once
Any router also forwards only once

No acknowledgement mechanism
— Uses UDP

No guarantee that intended recipient gets the
message

Often used for streaming media type content
Not good for critical information



Multicast

* Can we design a reliable protocol?

* |f there are multiple messages, can we ensure
they are delivered in correct order?



Reliable Multicast

The sending process is in the multicast group
Nodes may fail (by crashing)

We will use one to one communication between processes

— The communication is reliable (may be using suitable ack-based
protocol)

— If both processes are alive, the message gets delivered. i.e. the
network does not fail

Note that these assumptions are necessary.

— If network and message delivery can fail, then there may be 2
sets of processes who never communicate with each other

— Thus message from one set will never reach the other



Reliable Multicast

* multicast(g,m) : multicast
message m to group g

* receive(m): The OS or
network card receives
the message and gives to
the multicasting process

e deliver(m): The multicast
process delivers m to the
application

Application

Multicast process

Network




Reliable Multicast - definition

 Must have the following properties:

— Integrity: A working process p in group g delivers
m at most once, and m was multicast by some
working process

— Agreement: If a working process delivers m then

all other working processes in group g will deliver
m



Basic Multicast

Suppose send(p,m) is reliable
Define Basic multicast p.Bmulticast(g,m):

— Foreach qin g:
* P.send(q,m)
— On p.receive(m): # by multicasting algorithm
* P.Bdeliver(m) # to the application
Assumes the sender does not crash in operation

Therefore, does not implement Agreement in
presence of crashes



Reliable Multicast

* Use Bmulticast as function/procedure

* Implement Rmulticast(g,m) and Rdeliver(m)



Reliable Multicast

Initialization: Received={}
p.Rmulticast(g,m):

— p.Bmulticast(g, m)
Q.Bdeliver(m):

— If mis not in Received:

* Received = Received U {m}
* If p£q : g.Bmulticast(g,m)
* g.Rdeliver(m)

The key point is that q sends the message to other
working nodes before it accepts the message and
delivers to the interested application



Reliable Multicast

* Integrity: A message is delivered at most once and was
multicast by some correct process

— Obvious, since send(p,m) is reliable

 Agreement: Since a process forwards the message to
others before it delivers to the local application

— If it was in the reverse order, then the following could
have occurred:

* Application gets the message and takes action according to it (such
as send a message to update a database)

* The machine fails, so that no other working processes receive the
multicast

e Result: inconsistent state

— In the present case, a process failing in between the 2
actions is like it having failed before the multicast starts.



Multicast ordering

We want messages delivered in
“correct” (intended, consistent etc) order

FIFO: If a process p performs 2 multicasts, then
every working process that delivers these 2
messages deliver in the correct order

Causal: if p.multicast(g,m)— g.multicast(g,m’)
then every process which delivers both, deliver m
before m’

Total: All working processes deliver messages in
the same order



Multicast ordering

e Causal implies FIFO

* Total ordering

— Requires messages are delivered same order by
each process

— But this order may have no relation to causality or
message sending order

— Can be modified to be FIFO-total or Causal-total
orders



FIFO ordered multicast

* QOur reliable multicast implements FIFO

— Assuming the Bmulticast sends to group members
in same order

— Sequence numbers can be used to implement
FIFO otherwise



FIFO ordered multicast

* QOur reliable multicast implements FIFO

— Assuming the Bmulticast sends to group members
in same order

— Sequence numbers can be used to implement
FIFO otherwise



Causally ordered Multicast

Each process has a Vector clock
Suppose p sends a multicast m

g receives m and holds it until:

— It has delivered any earlier message by p

— delivered any multicast message that has been
delivered by p (to its application) before p
multicast m

These are easy to check using vector
timestamps



Total ordered multicast

* Using sequencer process
— p wants to multicast
— It asks sequencer process for a sequence number
— Sends multicast tagged with the sequence number

— All processes deliver messages by sequence
number

* Simple
* Single point of failure and bottleneck



Total ordered multicast

Using collective agreement
p first sends Bmulticast to the group

Each process in group picks a sequence
number

Processes run a distributed protocol to agree
on a sequence number for the message

Messages delivered according to sequence
number



Consensus

* Agreeing on things (leader, sequence
numbers, time for action, action to be taken
etc)



Basic Consensus

Set of processes
Each starts with state = undecided
Each has a single value

Have to set their decision variable to the same
value and enter decided state



Basic Consensus

 Termination: each process sets its decision
variable and enters decided state

 Agreement: If 2 processes have entered
decided state, then their decision variables
are equal

* |Integrity: If all working processes proposed
the same value v, then all of them in decided
state has decision=v



Basic Consensus

* Asimple solution:
— Use reliable multicast to communicate all values
— Use a simple rule (min, max etc) to decide

* |nefficient, but works!



Byzantine generals consensus

3 or more generals deciding whether to attack or
not

A commander issues the attack

One or more processes may be faulty (controlled
by the enemy)

Properties:
— Termination : everyone decides

— Agreement : non-faulty processes agree

— Integrity : If the commander is non-faulty, then all
non-faulty processes agree with commander



Byzantine generals consensus

Suppose 3 processes: A, B, C.
— Cis commander
— B is faulty

C says attack to both

A tells B: “C told me: attack”
B tells A: “C told me: do-not-attack”

A knows someone is lying. But does not know who

No solution with 3 processes

In general, no solution with n < 3f processes, where fis number of
faulty proceses



Interactive consensus

* Processes have to agree on a vector of values

* Each process contributed only to part of the
vector (but all processes must have same
vector in the end)

* Termination : everyone decides
 Agreement: they decide the same vector V
* If p, proposes x, then in V.=x for all processes



Consensus in Asynchronous systems

 Cannot be guaranteed

* Process A is not responding:
— Is it failed or just slow?
— It might just send a message at the wrong time



Termination detection

* How do we know when a distributed
computation has ended?



Termination detection

We suppose that the computation is started by a process s.

— This means, other processes start working after receiving message
from s or some other process

— They have no other way to know that a computation is in progress
s wants to know when all other processes have concluded working
S starts with weight=1.0
Other processes start with weight =0

When a process sends a message, it puts part (say, half) of its
weight in the message.

When a process receives a message, it adds the message weight to
its own weight.

When a process has finished computing, it sends its current weight
tos

When s has weight=1, it knows no other process is active



