
The UNIVERSITY of EDINBURGH

SCHOOL of INFORMATICS

CS4/MSc

Distributed Systems

Björn Franke

bfranke@inf.ed.ac.uk

Room 2414

(Lecture 6, CORBA in detail, October 9th 2006)

1

CORBA Components

In this lecture we consider the logical components of the CORBA standard.

ORB core Represents the communication modules of the generic architecture presented

in Lecture 4, and basic environment.

Object adapter Looks after the CORBA objects, linking implementations to object

references.

Implementation repository A source of servers — it keeps a mapping of object

adapters to implementations and can activate servers if necessary to provide instan-

tiated implementations.

Interface repository Keeps a register of IDL interfaces and can supply details of

the registered objects.

Dynamic invocation interface Allows clients to construct a remote invocation

request when an appropriate proxy is not available.

Dynamic skeleton interface Allows servers to accept invocations on CORBA objects

without specific skeletons.

2

Object Adapters

As we have seen servants interact with the ORB via an object adapter. It includes

the roles of remote reference module and dispatcher in the generic model of Lecture

4. It has the following tasks:

• it generates and interprets object references;

• it knows where to locate or how to instantiate a servant for each object in its

domain;

• it also manages the run-time environment of the servants.

The object adapter gives each CORBA object a unique object ID which forms part

of its remote object reference; this incorporates the object adapter’s own name. Once

registered, the object is (usually) maintained in a table known as the active object

map.

Originally CORBA specified the Basic Object Adapter (BOA). Later the Portable

Object Adapter (POA) was introduced to eliminate inconsistencies which had

appeared in BOA implementations.

3

POA Architecture(1)

• POA support different policies, for example with respect to what to do if a request

arrives for a servant which is not currently running. For this reason more than

one POA may be running on each host—each POA can only support one set of

policies.

• The lifetime of a servant is regarded as a distinct from the lifetime of an object:

over the lifetime of an object it may be represented by several servants, instantiated

in different servers.

• The role of the POA is to ensure that a servant is matched to an object when a

method is invoked. This may mean starting a server.

• The action of providing a running servant to serve requests on a particular object

ID is termed incarnation.

• The action of breaking the association between a servant and an object ID is

termed etherealization.

• A POA may have a default servant to which all incoming requests for object

IDs not in the active object map are dispatched.

4

POA Architecture(2)

User−supplied

Active Object Map

Active Object Map
Root POA

User−supplied
Servant

Active Object Map

POA C

POA Manager POA B

Object ID

Object ID
Object ID
Object ID

Object ID
Object ID
Object ID

Object ID

Default ServantDefault Servant Manager

POA A

Adapter Activator
Servant Manager

User−supplied
Servant

User−supplied
Servant

User−supplied
Servant

User−supplied
Servant User−supplied

Servant

User−supplied
Servant

CORBA Object Reference

Programming language
Servant Pointer/Referemce

Adapter Activator

5

Creating and Using the POA

In general, registering an object with the ORB through a POA involves:

Get the root POA: "rootPOA" is one of the object names provided for bootstrap-

ping purposes.

Define the POA policies: default policies can be overridden by setting them explic-

itly.

Create the POA: Having distinct POA means that different objects can be managed

under different sets of policies

Activate the POAManager: Each POA has a POAManager which controls the

processing state of the POAs associated with it.

Activate servants: The POA provides methods to activate servants and associate

them with objects (recording in the active object map according to policy).

Create object references: The POA can also create object references either from

an activated servant (servant to reference()) or as an abstract object (create reference with id()).

6

POA Policies

Thread Policy single-threaded/sequential processing of requests or multi-threaded

policy under ORB control (default).

Lifespan Policy objects created will be transient (default) or persistent with

respect to the POA.

Object ID Uniqueness Policy whether a servant can provide implementation to

a single ID (default) or to multiple IDs.

ID Assignment Policy IDs are assigned by the application or the ORB (default)

Servant Retention Policy record active servants (retain (default)) in the active

object map or not.

Request Processing Policy Incoming requests may be handled only via the

active object map (default); may revert to a default servant; or a servant

manager may be used to locate or activate a servant.

Implicit Activation Policy servants allowed to be implicitly activated (default)

or not.

7

Binding a transient IOR

IDL:MyObject:1.0 papa:1805 OA9,obj_979

OA

Server
Client

IOR
IDL:MyObject:1.0 tweed:1805 OA9,obj979

OA9

Server
Client

IOR

IDL:MyObject:1.0 papa:1805 OA9,obj979

OA

Server
Client

IOR
IDL:MyObject:1.0 tweed:1805 OA9,obj979

OA9

Server
Client

IOR

IDL:MyObject:1.0 papa:1805 OA9,obj_979

OA

Server
Client

IOR
IDL:MyObject:1.0 tweed:1805 OA9,obj979

OA9

Server
Client

IOR client sends request

server sends result
(or exception)

Server identifies
appropriate
servant for
request

op() [OA9,obj979]

tweed:1805

tweed:1805

tweed:1805

1

2

3

obj_971
obj_979
obj_983

obj971
obj979
obj983

obj_971
obj_979
obj_983

obj971
obj979
obj983

obj_971
obj_979
obj_983

obj971
obj979
obj983

8

Persistent Objects

Persistence can be offered at various different levels within CORBA.

• A transient object can offer persistence of data between different instantiations by

writing out and reading in its state. For example, see the example Memo.idl and

associated implementations available from the web pages. This example writes

text to a file but more generally an object can serialise itself to a file.

• When the ORB supports it an object can have persistence between instantiations of

the server which hosts it and the POA which registered it. (see following example).

When a request for such an object arrives, if necessary a server process will be

activated for the object, as well as the object itself, transparently to client.

• Within the CORBA standard this is defined in terms of a component called the

Implementation Repository.

9

Implementation Repositories

• A persistent IOR denotes the same persistent CORBA object across server and

object adapter instantiations.

• Binding persistent IORs is carried out via an implementation repository.

• An implementation repository is a component proprietary to each ORB which

stores information about where the executable code that implements objects resides

and how to run it correctly.

• The implementation repository has several responsibilities:

– maintain a register of known servers;

– record which server is currently running at which host and port;

– start servers on demand if registered for automatic activation.

• If a server creates persistent IORs, the server’s host must be configured with the

address of an implementation repository.

10

Binding a persistent IOR (1)

PR1 rsh tweed "/usr/local/bin/PR1 −x"

/usr/local/bin/PR2

tweed:1870

PR2
.....

Implementation Repository at Craro:1066
Server Table

2
1

op() [PR1,obj979]

Client sends
request

repository starts server

fork/exec(rsh tweed "/usr/local/bin/PR1 −x");

PR1 rsh tweed "/usr/local/bin/PR1 −x"

/usr/local/bin/PR2

tweed:1870

PR2
.....

Implementation Repository at Craro:1066
Server Table

34

my_address(tweed:1870)

New address
returned to client

Exact location returned

to repository

location−forward(tweed:1870)

IDL:MyObject:1.0 papa:1805 OA9,obj_979

OA

Server
Client

IOR
IDL:MyObject:1.0 craro:1066 PR1,obj979

PR1

Server
Client

IOR

tweed:1870

IDL:MyObject:1.0 papa:1805 OA9,obj_979

OA

Server
Client

IOR
IDL:MyObject:1.0 craro:1066 PR1,obj979

PR1

Server
Client

IOR

tweed:1870

obj_971
obj_979
obj_983

obj971
obj979
obj983

obj_971
obj_979
obj_983

obj971
obj979
obj983

11

Binding a persistent IOR (2)

IDL:MyObject:1.0 papa:1805 OA9,obj_979

OA

Server
Client

IOR
IDL:MyObject:1.0 craro:1066 PR1,obj979

PR1

Server
Client

IOR

IDL:MyObject:1.0 papa:1805 OA9,obj979

OA

Server
Client

IOR
IDL:MyObject:1.0 craro:1066 PR1,obj979

PR1

Server
Client

IOR

IDL:MyObject:1.0 papa:1805 OA9,obj_979

OA

Server
Client

IOR
IDL:MyObject:1.0 craro:1066 PR1,obj979

PR1

Server
Client

IOR client sends request

server sends result
(or exception)

Server identifies
appropriate
servant for
request

op() [PR1,obj979]

tweed:1870

tweed:1870

tweed:1870

5

6

7

obj_971
obj_979
obj_983

obj971
obj979
obj983

obj_971
obj_979
obj_983

obj971
obj979
obj983

obj_971
obj_979
obj_983

obj971
obj979
obj983

12

Persistent Binding (2)

• Use of an implementation repository has implications for scalability, performance

and fault tolerance.

• If several hosts share an implementation repository forming a location domain

then a server can transparently move to another host within the same domain.

• Note all objects implemented by the server must move together, or if the server

has multiple POA, all objects referenced by the relevant POA must move together.

• Servers can migrate across location domains but only with negative impact on

performance and scalability. This is achieved by maintaining entries in multiple

implementation repositories either with explicit locations or with forwarding infor-

mation.

13

Persistent Greetings (1)

We can modify the Hello example to demonstrate persistence.

• The servant implementation remains as shown in Lecture 6.

• The server must instantiate a POA with the persistent lifespan policy. This

involves setting up the policy and then starting a child of the root POA, with this

policy set. This POA is used to activate the servant, thus giving it persistence.

An object reference is obtained and registered with the Naming Service as usual.

• The server is started using the servertool.

• The client we use is constructed to show the persistence and simply periodically

makes invocations on the Hello object with a delay between each invocation.

• Using the servertool we can shutdown the server (or it could crash) but the

client requests will still be satisfied as the server will be restarted if necessary.

14

Persistent Greetings (2): HelloServer.java

try {

ORB orb = ORB.init(args, null);

HelloServant servant = new HelloServant(orb);

POA rootpoa =

POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

Policy[] policy = new Policy[1];

policy[0] =

rootpoa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT);

POA poa = rootpoa.create_POA("childPOA", null, policy);

poa.the_POAManager().activate();

poa.activate_object(servant);

org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");

NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

NameComponent path[] = ncRef.to_name("Hello");

ncRef.rebind(path, poa.servant_to_reference(servant));

orb.run();

}

15

Persistent Greetings (3): HelloClient.java

try {

ORB orb = ORB.init(args, null);

org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");

NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);

helloImpl = HelloHelper.narrow(ncRef.resolve_str("Hello"));

while (true) {

System.out.println(helloImpl.sayHello());

System.out.println("Rest a while before calling

the server again...\n");

System.out.println("...if the server is down it

will be automatically restarted...\n");

Thread.sleep(6000);

}

}

16

servertool

The JDK ORB comes with a tool for managing persistent servers (servers which

host persistent objects). This is called the servertool. You can think of it as

the interface to the Implementation Repository. The tool is started by servertool

-ORBInitialPort portno

Servers can be registered, unregistered, started up and shutdown via a simple command

line interface.

• When registering a server we must provide the classpath as well as the name of

the server class. It is also possible to associate a server with an application. For

example:

register -server HelloServer -applicationName greetings

-classpath /home/jeh/CS4/DS/Lecture7/programs/

Generating response: server registered (serverid = 257).

• We can subsequently shutdown the server using either the serverid or the applica-

tionName e.g. shutdown -serverid 257

17

Dynamic Invocation

CORBA also provides mechanisms for making invocation requests on objects whose

interface was not available at compile time. This means that no stub is available to the

client process and no skeleton is present at the server. To overcome these omissions the

Dynamic Invocation Interface (DII) and the Dynamic Skeleton Interface

(DSI) are provided.

• CORBA does not allow classes for stubs (or proxies) to be downloaded at runtime,

so a client wishing to invoke a method on a remote object for which it has no stubs

must do so via the DII.

• Using the DII the client explicitly builds the request—a invocation on a method

with arguments.

• The DII is also used when the client wants to make a deferred synchronous

invocation.

• When the DSI receives an invocation it inspects the contents of the request to

discover its target object, the method to be invoked and the arguments. It then

invokes the target.

18

Interface Repository

• The role of the interface repository is to provide information about registered IDL

interfaces to clients and servers that require it.

• For any given interface type, this will be the names of the methods and the names

and types of the arguments for each methods, as well as any exceptions.

• This adds a facility similar to Java reflection to CORBA objects.

• The IDL compiler assigns a unique type identifier to each IDL type in the interfaces

it compiles. This is included in the remote object references of all objects of that

type. It is known as the repository ID.

• The repository ID is used to look up an interface in the interface repository.

• The Java IDL ORB does not include an interface repository, or support dynamic

invocation interfaces or dynamic skeleton interfaces.

19

Client as Applet: HelloApplet.java

The major difference of which the programmer needs to be aware of when the client is

an applet is that the way in which the orb is initialised is different:

public void init() {

try {

// set properties to ensure the correct ORB is initialised

Properties props = new Properties();

props.put("org.omg.CORBA.ORBClass", "com.sun.CORBA.iiop.ORB");

// create and initialize the ORB

ORB orb = ORB.init(this, props);

........

20

Sandboxing Implications

• Sandboxing prevents an unsigned applet from gaining access to local resources, in

particular networking capabilities.

• Network calls are limited to using connections with the host from which the applet

was downloaded — this is in conflict with CORBA location transparency. The

unsigned applet can only invoke operations on objects that are local or resident

on its host of origin.

• The problem is overcome by an IIOP gateway. This is a process running on

the applet’s host.

• The client’s stub code sends all its remote requests to the IIOP gateway which is

then responsible for forwarding the requests to the target object.

• Similarly any response to the invocation is routed back to the client via the IIOP

gateway.

21

Server as Java applet

• A server can also be implemented as an applet.

• The associated object implementations cannot be made persistent and cannot

make any data persistent because of the sandboxing restrictions on local resources.

• These objects will typically have transient object references.

• As with an applet client, for an unsigned applet, an IIOP gateway on the applet’s

host will be used to overcome networking restrictions whilst maintaining location

transparency, unless invocations come from the originating host.

• In general, objects hosted by applets will be callback objects.

• Applets acting as servers need to handle two event loops: one to handle incoming

CORBA requests and the other to deal with applet events such as those generated

by the GUI.

22

Clients and Servers as Java applets

Browser

Browser

Download
Applet

WWW Server

IIOP Gateway

Implementation
Object

Skeleton
Code

Server

IIOP

Download Applet

IIOP

IIOP

Client
Applet

Proxy

Applet

JVM

JVM

library

ORB
class

Application
Java

ORB
class
library

Server

Implementation
Object

skeleton code
JVM

library

ORB
class

JVM

23

