
The UNIVERSITY of EDINBURGH

SCHOOL of INFORMATICS

CS4/MSc

Distributed Systems

Björn Franke

bfranke@inf.ed.ac.uk

Room 2414

(Lecture 4: CORBA and CORBA IDL, 2nd October 2006)

1

Common Object Request Broker Architecture (CORBA)

• CORBA is a distributed object standard developed by the OMG (Object Manage-

ment Group).

• It is a collection of specifications for components and protocols.

• It aims to provide both platform- and language-independence.

• The system is location transparent—the locus of computation will move

around the system transparently to the user and the application programmer does

not need to know the location (or implementation details) of remote objects.

• CORBA 3.0 provides some support for object migration which means that objects

may change location between invocations.

2

ORB: abstract view

ORBClient Server

JVM JVM

• Central to CORBA is the Object Request Broker (ORB).

• Sometimes called the Software Bus, it provides the means for distributed objects

to communicate as well as infrastructure services such as a Naming Service or

Security Services.

• It incorporates the communication modules, remote reference module and the

dispatcher described generically in the previous lecture.

• Hides low-level details of platform-specific networking interfaces.

• May communicate with another ORB, using a General Inter-ORB Protocol(GIOP)

such as Internet Inter-ORB Protocol (IIOP).

3

ORB: concrete view

JVM
ORB

Java
Application

library
class

Client Proxy
(stub code)

Client Application
Java

ORB
class
library

Server

JVM

Implementation
Object

skeleton code

• CORBA provides an Interface Definition Language (IDL) to specify object

interfaces.

• A programming language specific IDL compiler then creates stub and skeleton

code to facilitate the remote invocation (cf. RMI).

• JDK comes with the idlj compiler.

• An implementation of a CORBA object is called a servant.

4

CORBA Development Process

• Write IDL describing the interfaces to the objects that will be used or implemented.

• Compile the IDL file to produce the stub and skeleton code.

• Identify the IDL compiler-generated interfaces and classes that we need to use or

specialise in order to invoke or implement operations.

• Write code to initialise the ORB and inform it of any CORBA objects we have

created.

• Compile all generated and application code with a Java compiler.

• Run the distributed application.

5

Interface Definition Language (IDL)

• OMG IDL is a declarative language for defining interfaces to CORBA objects;

• It is intended to provide a language-independent way in which implementers and

users can be assured of type-safe invocation of operations;

• No programming statements are included as it is only intended for defining inter-

face signatures;

• IDL syntax is drawn from C++;

• ORB-specific IDL compilers generate stub and/or skeleton code that handles the

marshalling and unmarshalling of arguments and results. Therefore all parameters

of methods must be marked to indicate whether they are input, output or both.

6

IDL constructs

Constants — to assist with type declarations

Data type declarations — to use for parameter typing

Attributes — which get and set a value of a particular type

Operations — which take parameters and return values

Interfaces — which group data type, attribute and operation declarations

Modules — for name space separation.

N.B.: Identifiers are case sensitive but cannot co-exist with other identifiers that differ

only in case.

7

Basic Types

[unsigned] short signed[unsigned] 16-bit 2’s complement integer

[unsigned] long signed[unsigned] 32-bit 2’s complement integer

float 16-bit IEEE floating point number

double 32-bit IEEE floating point number

char ISO Latin-1 character

boolean Boolean type (TRUE/FALSE)

string variable length string of characters

octet 8-bit uninterpreted type

enum enumerated type with named integer values

any can represent values from any possible IDL

type, basic or constructed, object or non-

object

8

Sequences and Arrays

• A sequence is an ordered collection of items that can grow at run-time—this growth

may be bounded or unbounded.

• Two run-time characteristics: maximum and current length.

• The advantage of sequences is that only the current number of elements is trans-

mitted to a remote object when a sequence argument is passed.

• Sequence declarations must be given a typedef alias.

• Arrays are usually declared within a typedef, as they must be named before they

are used as operation parameter or return types.

• Arrays at run-time will have a fixed length.

• The entire array will be marshalled and transmitted in a request if used as a

parameter or a return type.

• Other C and C++ user-defined types (structures and discriminated unions) are also

included.

9

Example:

module StructuredTypes {

typedef sequence<float> TempSeq;

typedef sequence<float,12> AnnualTempSeq;

typedef short Scores[10];

const short dim=200;

typedef long My_matrix[dim][dim];

.

.

.

};

10

User-defined Types

In addition to arrays and sequences, IDL offers a number of other user-defined types,

i.e.

• struct,

• union and

• enum.

For example:

struct TestStruct{

short a_short;

long a_long;

};

11

Modules and Interfaces

Modules

• The module is used as a naming scope which can be used to avoid name clashes

when using several IDL declarations together.

• A module can contain any well-formed IDL, including nested modules.

Interfaces

• An interface can contain constants, data type declarations, attributes

and operations.

• Interfaces also open a new naming scope.

• An interface name in the same scope can be used as a type name.

• An interface in another name scope can be referred to by giving a scoped name

(in C++ :: style).

12

Scoping example:

module outer {

module inner { // nested module

interface inside { }; // empty interface

};

interface outside { // can refer to inner as local

inner::inside get_inside();

};

};

get inside() returns an object reference of type ::outer::inner::inside.

13

Inheritance

The set of operations offered by an interface can be extended by declaring a new inter-

face which inherits from the existing one:

(derived : base)

module InheritanceExample {

interface A {

typedef unsigned short ushort;

ushort op1();

};

interface B : A {

boolean op2()(in ushort num);

};

};

All interfaces implicitly inherit from CORBA::Object.

14

Operations

• Operation declarations are similar to C++ function prototypes.

• They consist of an operation name, a return type (or void) and a parameter list.

• They may additionally have a raises clause specifying which user-defined excep-

tions the operation may raise.

• They may have a context clause giving a list of names of string properties from

the caller’s environment that need to be supplied to the operation implementation.

• The list of parameters is surrounded by parentheses and separated by commas.

• Each parameter has a directional indicator: in, out or inout.

• The keyword oneway indicates that operation invocation will use maybe seman-

tics : the caller gets an immediate return with no indication of success or results.

15

Exceptions

• A set of standard exceptions, known as system exceptions, is defined in the

CORBA module.

• User-defined exceptions may be specified within an interface.

Example:

exception SomethingWrong {

string reason;

long id;

};

16

Attributes

• An attribute is logically equivalent to a pair of accessor functions–get and set.

• Simpler to declare than operations.

• Consist of the keyword attribute followed by the type of the attribute(s) and

the attribute name list.

• readonly attributes generate only the get function.

• No raises clause can be included so only standard exceptions may be raised by

the accessor operations.

Example:

attribute string quote_of_the_day;

readonly attribute string corporate-motto;

17

Forward Declarations

Interfaces may be mutually referential but forward declarations are necessary to avoid

compilation errors.

module example {

interface A; // forward declaration

interface B { // B can use forward-declared

A get_an_A(); // interfaces as type names

};

interface A {

B get_a_B();

};

};

18

Stock.idl

module StockObjects {

struct Quote {

string symbol;

long at_time;

double price;

long volume;

};

exception Unknown {};

interface Stock {

Quote get_quote() raises (Unknown); // returns quote

void set_quote(in Quote stock_quote); // sets current quote

readonly attribute string description; // provides description

};

interface StockFactory {

Stock create_stock(in string symbol, in string description);

};

};

19

Compiling it...

with the command,

> idlj -fall Stock.idl

the following files will be generated in a StockObjects directory:

Quote.java StockHelper.java

QuoteHelper.java StockHolder.java

QuoteHolder.java StockOperations.java

Stock.java StockPOA.java

StockFactory.java Unknown.java

StockFactoryHelper.java UnknownHelper.java

StockFactoryHolder.java UnknownHolder.java

StockFactoryOperations.java _StockFactoryStub.java

StockFactoryPOA.java _StockStub.java

20

Basic Data Type Mappings

The mapping for basic data types is straightforward due to the similarity between the

IDL basic types and the Java primitive types.

IDL Type Java

boolean boolean

char char

wchar char

octet byte

short/unsigned short short

long/unsigned long int

long long/unsigned long long long

float float

double double

There is a potential problem mapping from IDL’s unsigned integer types to Java’s

signed integer types.

21

Holder Classes for Basic Data Types

Holder classes for the basic IDL data types are defined in the package org.omg.CORBA:

package org.omg.CORBA;

final public class IntHolder {

public int value;

public IntHolder() { }

public IntHolder(int initial) {

value = initial

}

}

22

Parameter Management Responsibilities

Invoking Client Object implementation

Result Declares variable of return

type and assigns result.

Declares variable, creates

and initialises instance,

returns instance.

in Declares variable, creates

and initialises instance,

passes to invocation.

Declares parameter, uses

value passed.

inout Declares variable, creates

Holder object, initialises

with a value, passes to

invocation.

Declares Holder param-

eter, modifies value field

of Holder parameter.

out Declares variable, creates

Holder object passes to

invocation.

Declares Holder param-

eter, initialises value field

of Holder parameter.

23

idlj compiler output (Example.idl)

ExamplePOA.java Abstract class forming the server skeleton. It provides basic

CORBA functionality. The server implementer must write a “ExampleServant”

class, derived from this class.

ExampleStub.java The client stub. The client implementer must link this with

the client class.

ExampleOperations.java This contains the Java operations interface which corre-

sponds to the IDL interface Example.

Example.java This contains the Java signature interface. It extends the operations

interface and org.omg.CORBA.Object thus providing standard CORBA object

functionality.

ExampleHelper.java This final class provides auxiliary functionality; in partic-

ular the narrow() method providing safe downcasting of CORBA object refer-

ences to their most derived type.

ExampleHolder.java This final class holds a public instance member of type

Example. Instances of this are needed when an argument of type Example is an

out or inout argument of an IDL operation.

24

Example Java interface: StockOperations.java

package StockObjects;

/**

* StockObjects/StockOperations.java .

* Generated by the IDL-to-Java compiler (portable), version "3.1"

* from Stock.idl

* Tuesday, October 21, 2003 10:25:33 AM BST

*/

public interface StockOperations

{

StockObjects.Quote get_quote () throws StockObjects.Unknown;

// returns quote

void set_quote (StockObjects.Quote stock_quote);

// sets current quote

String description ();

} // interface StockOperations

Example Java interface: Stock.java

package StockObjects;

/**

* StockObjects/Stock.java .

* Generated by the IDL-to-Java compiler (portable), version "3.1"

* from Stock.idl

* Tuesday, October 21, 2003 10:25:33 AM BST

*/

public interface Stock extends StockOperations,

org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity

{

} // interface Stock

26

