
The UNIVERSITY of EDINBURGH

SCHOOL of INFORMATICS

CS4/MSc

Distributed Systems

Björn Franke

bfranke@inf.ed.ac.uk

Room 2414

(Lecture 3: Remote Invocation and Distributed Objects,

28th September 2006)

1

Programming models for distributed application

Programming models for distributed applications are based on well-known models for

single process applications:

Remote procedure call Client programs call procedures running in server programs

running in separate processes, typically on different hosts.

Remote method invocation The state and functionality of the system is parti-

tioned between objects. A client object may invoke a method on a remote object,

residing in another process, on another host.

Event-based processing and event notification The behaviour of the system

is driven by events, which represent local state changes within objects. Objects

receive notifications of events at other objects in which they have registered an

interest.

2

Interfaces and IDLs

To make interaction possible between remote components an interface, detailing the

capabilities of the component, must be published. This may be in the programming

language concerned (Java RMI) or in a special language designed for the purpose (IDL

for CORBA or XDR for Sun RPC).

• Interfaces only describe the methods or procedures which are available — not

variables (cf. attributes in CORBA IDL).

• There are no constructors for interfaces.

• The specification of a procedure or method describes parameters as input, output

or both.

• Pointers cannot be passed as arguments or returned as results.

3

Delivery Semantics

When methods or procedures are invoked remotely it is not necessarily certain that they

will execute as expected. This uncertainty can lead to different invocation semantics :

Maybe semantics If requests are sent in unacknowledged messages there is no

certainty that the request ever reached the server. In this case the invocation

may have taken place or not.

At-least-once semantics If requests may be retransmitted due to communication

failures (eg. no reply) but duplicates are not filtered by the server, the retransmis-

sion of a request may result in the re-execution of a the method or procedure. Sun

RPC uses at-least-once call semantics.

At-most-once semantics If the system supports retransmission of requests and

duplicate filtering at the server, we can be sure that re-execution does not happen.

Duplicate requests trigger re-transmission of the original result. (Assumes the

server maintains some form of history.) Java RMI uses at-most-once semantics.

4

Remote Procedure Call

• The service interface of the server defines the procedures that are available for

calling remotely.

• There is a stub procedure in the client for each procedure in the service interface

it wishes to access. To the client it looks like a local procedure but instead of

executing the call it marshalls the procedure identifier and its arguments into a

request message. When the reply message is received it unmarshalls the result and

returns it to the calling process.

• A communication module passes the marshalled request to a communication module

in the server process.

• The server process contains a stub procedure and a service procedure for each

procedure in the service interface. A dispatcher in the server process selects the

correct stub procedure, which unmarshalls the arguments and invokes the service

procedure. When the procedure returns, the stub procedure marshalls the result

and passes it to the communication module.

5

Files interface in Sun XDR

const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data {

int length;

char buffer[MAX]; };

struct writeargs {

FileIdentifier f;

FilePointer position;

Data data; };

struct readargs {

FileIdentifier f;

FilePointer position;

Length length; };

program FILEREADWRITE {

version VERSION {

void WRITE(writeargs)=1; 1

Data READ(readargs)=2; 2

}=2;

} = 9999;

6

RPC Example

• XDR is the interface language for Sun RPC and has an associated interface

compiler rpcgen for use with C.

• The interface specifies a set of procedures together with supporting type definitions.

• Interfaces do not have names, but a program number (9999) and version number

(2).

• Similarly each procedure has a number as well as a signature. The number is used

in the message generated by the stub to identify which procedure is required.

• The results must be returned as a single value.

• Running rpcgen over the example will produce the client stub procedures, the

server stub procedures, the server dispatcher and the server main procedure. In

addition XDR marshalling and unmarshalling procedures for use by the dispatcher

and the stubs will be produced.

7

Distributed objects

Distributed object systems have become the predominant paradigm for distributed

systems.

• The encapsulation of state variables within objects provides a logical partition of

the state of the complete program. This facilitates distribution of state over several

processes.

• Encapsulation within objects can be used to mask heterogeneity.

• Existing, legacy applications can be encapsulated within objects, offering compa-

nies a mechanism to migrate to distributed systems without complete re-implementation.

• Replication of objects can increase the reliability and the performance of systems.

8

Remote Object References

• When a distributed object system is used, a client needs to be able to uniquely

identify the remote object on which it wishes to invoke a method. This is achieved

using a remote object reference.

• A common approach is to incorporate the IP address name of the host and port

number of the hosting process into the reference of the object.

• The time of creation may also be included, since the time and port together will

uniquely identify a process.

• An object number may be used to differentiate different instantiations of transient

objects.

Internet address port number time interfaceobject number

32 bits 32 bits 32 bits32 bits

9

Anatomy of remote method invocation

remote
reference

module

remote
reference

module

skeleton and
dispatcher
for B’s class

communication
module

SERVER

remote
object B

CLIENT

object A

proxy B
module

communication

request

reply

• The proxy (or stub) in the client process makes the remote invocation transparent

to the client. When object A wants to invoke a method on object B, it simply

invokes the corresponding method on the B proxy object locally.

• The remote reference module is responsible for translating between local and

remote object references.

• The communication modules implement the request-reply protocol.

10

Participants in remote method invocation (1)

The Communication Module is responsible for transmitting the requests and

replies between the client and the server. It will provide the specified invocation

semantics. When a request arrives at the server, the communication module will

use the remote reference module to obtain the appropriate dispatcher.

The Remote Reference Module maintains a remote object table which has an

entry for each remote object held locally, and each local proxy for a remote object.

The module is also responsible for creating remote object references for remote

objects the first time they are passed as argument or result.

The proxy makes the remote invocation appear as if it were transparent. It offers a

method corresponding to each method of the interface of the remote object. But

these methods marshall a reference to the target object, its own methodId and

its arguments into a request message. It waits for the reply and unmarshalls the

results returning them to the invoker.

11

Participants in remote method invocation (2)

The dispatcher receives incoming requests from the server communication module.

When it receives a request message it uses the methodId to select the appropriate

method in the skeleton, passing on the request message which still contains the

marshalled arguments. The proxy and the dispatcher use the same allocation of

methodIds to the methods of the remote interface.

The skeleton implements the methods of the remote interface, but similarly to the

proxy, the implementation deals with unmarshalling rather than the functionality

of the methods. A skeleton method unmarshalls the arguments in the request

message and invokes (locally) the corresponding method in the remote object.

When the invocation is complete it marshalls the result, together with any excep-

tions, in a reply message which is sent to the proxy.

The classes for the proxy, dispatcher and skeleton are generated automatically by an

interface compiler.

12

Java RMI

• Java’s remote method invocation (RMI) allows objects to be created and deployed

from different instances of a JVM. These virtual machines might run on the same

host, or they might run on different ones.

• The RMI package is called java.rmi . This contains two important sub-packages,

java.rmi.server for use in implementations of RMI servers and the package

java.rmi.activation for creating remotely accessible objects which are acti-

vated when needed.

• An RMI application declares remote interfaces . These are interfaces which define

methods which can be invoked remotely. Remote interfaces must be declared

public. If not, any client from another package will fail when trying to load a

remote object which implements that interface.

13

Serializable objects and remote interfaces

In order to mark an object as serializable we need only declare that it implements the

java.io.Serializable interface.

In order to mark a public interface as remote we need only declare that it extends the

java.rmi.Remote interface. However the methods implementing a remote interface

must declare that they throw the exception java.rmi.RemoteException .

When a local method invocation fails, its type and degree of failure is available

for inspection and enquiry. When a remote invocation fails (even simply on another

virtual machine on the same host) we do not have the same level of access to be able

to uncover the cause. Thus even the simplest methods in a remote interface must

declare that they may throw java.rmi.RemoteException . A remote interface will

preferably cater for partial failures , perhaps by providing idempotent methods .

14

The RMI Registry class java.rmi.Naming

A binder in a distributed system is a separate service which maintains a table mapping

textual names to remote object references. The RMIregistry is the binder for Java RMI.

An instance of RMIregistry must run on every server computer that hosts remote

objects. It is accessed by methods of the Naming class.

• rebind and bind take a string and a remote object reference and register the

remote object by the given name.

• unbind removes a binding for a given (name, remote object reference) pair.

• lookup takes a name and returns a remote object reference; and

• list returns an array of strings containing all the names bound in the registry.

15

The RMI Security Manager

Code downloaded over the network is always assumed to be untrusted and so it is appro-

priate that a conservative security manager be installed. The class java.rmi.RMISecurityManager

defines such a security manager and the first act of an object server which implements

a remote interface would be to install such a security manager:

System.setSecurityManager(new RMISecurityManager());

Classes are passed between client and server only as they are needed. A class such

as java.lang.String will never need to be downloaded over the network even if

String values are being exchanged. Classes such as these are already available to

both the client and the server.

16

Java RMI Example

The example shown in the following slides is discussed in more detail in Section 5.5 of

CDK. It is intended to represent part of the implementation of a shared whiteboard.

• A groups of users share a common view of a drawing surface containing graphical

objects.

• Each object has been drawn by one of the users.

• The server maintains the current state of a drawing by providing an operation for

clients to inform it about the latest shape their users have drawn and keeping a

record of all the shapes received.

• The server also provides operations allowing clients to retrieve the latest shapes

drawn by other users by polling the server.

• The server has a version number (integer) that it increments each time a new shape

arrives and attaches to the new shape. The server provides operations allowing

clients to enquire about its version number and the version number of each shape.

17

Java Remote Interfaces Shape and Shapelist

import java.rmi.*;

import java.util.Vector;

public interface Shape extends Remote {

int getVersion() throws RemoteException;

GraphicalObject getAllState() throws RemoteException;

}

public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException;

Vector allShapes() throws RemoteException;

int getVersion() throws RemoteException;

}

18

Java class ShapeListServer

import java.rmi.*;

public class ShapeListServer{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

try{

ShapeList aShapeList = new ShapeListServant();

Naming.rebind("Shape List", aShapeList);

System.out.println("ShapeList server ready");

}catch(Exception e) {

System.out.println("ShapeList server main "+e.getMessage());

}

}

}

19

Java class ShapeListServant

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

import java.util.Vector;

public class ShapeListServant extends UnicastRemoteObject

implements ShapeList {

private Vector theList; // contains the list of Shapes

private int version;

public ShapeListServant()throws RemoteException{...}

public Shape newShape(GraphicalObject g) throws RemoteException{

version++;

Shape s = new ShapeServant(g, version);

theList.addElement(s);

return s;

}

public Vector allShapes()throws RemoteException{...}

public int getVersion() throws RemoteException { ... }

}

20

Java client of ShapeList

import java.rmi.*;

import java.rmi.server.*;

import java.util.Vector;

public class ShapeListClient{

public static void main(String args[]){

System.setSecurityManager(new RMISecurityManager());

ShapeList aShapeList = null;

try{

aShapeList = (ShapeList)Naming.lookup("//bruno.ShapeList");

Vector sList = aShapeList.allShapes();

} catch(RemoteException e) {

System.out.println(e.getMessage());

} catch(Exception e) {

System.out.println("Client: " + e.getMessage());

}

}

}

21

Support for RMI in the JDK

• SUN’s Java Developer’s Kit provides an implementation of the RMI registry ; the

RMI compiler for generating client stubs and server skeletons for a given class

definition; and the RMI daemon , a process which allows objects to be registered

and activated in a Java virtual machine.

• The command rmiregistry creates and starts a remote object registry on the

current host. An optional parameter to the command can be given in order to

specify a port. Port 1099 is used if no port number is specified.

• The command rmic invokes the RMI compiler to generate stub and skeleton classes

for remote objects from compiled class files which implement remote interfaces.

• The command rmid invokes the RMI daemon.

22

