
Distributed Systems — Security

Allan Clark

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/ds
Autumn Term 2012

Security

Overview

I In this part of the course we will look at security in distributed
systems

I Cryptography will provide the basis of secrecy and integrity
I That is, making sure that no unauthorised entity may read any

particular message
I No unintended message is delivered, including a duplication of

an intended message

I We will examine private-key techniques as well as public-key
techniques and digital signatures

I We will look at cryptographic algorithms

Security

Books

Security

Books
I We will focus on threats to distributed systems caused by the

inavoidable exposure of their communication channels
I The largest threat is generally human error
I Bruch Schneier also has a newsletter each month called

“cryptogram” which talks about many security related topics
including cryptography and physical/human related policies

Security

Cryptography

I Although computer security and computer cryptography are
separate subjects, digital cryptography provides the basis for
most of the mechanisms that we use in computer security

I It is only in recent years (the 1990s) that cryptographic
techniques have been wrestled from the domain of the military
into the domain of public knowledge and use

I When Bruce Schneier first published his book “Applied
Cryptography” in 1994 the legal status of including
cryptographic algorithms and techniques was in doubt.

Security

Pre-1999 US Munitions Control

I RSA crypto-algorithms, were, until 1999, classified by the US
State Department as munitions

I Meaning they were classified in the same category as:
chemical and biological weapons, tanks, heavy artillery, and
military aircraft

I Additionally this meant that it was illegal to export such
cryptographic algorithms, with penalties including $1m fines
and long prison sentences

I This was obvious buffoonery:
I It is impossible to enforce
I The technology is widely available throughout the world
I Algorithms published in international journals
I Some cryptographic algorithms were developed outside the US

Security

Pre-1999 US Munitions Control

I Popular email programs such as Netscape Communicator had
to have separate downloads for US based downloaders and
external downloaders

I When it went open-source and became mozilla this was more
nonsense since very quickly the external versions were patched
to include full 160-bit encryption

I People took to methods of highlighting how ridiculous such an
export ban was, one such effort demonstrated that RSA crypto
algorithms can be written in a fairly short amount of Perl code

#!/bin/perl -sp0777i<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<j]dsj
$/=unpack(’H*’,$_);$_=‘echo 16dio\U$k"SK$/SM$n\EsN0p[lN*1
lK[d2%Sa2/d0$^Ixp"|dc‘;s/\W//g;$_=pack(’H*’,/((..)*)$/)

Security

Pre-1999 US Munitions Control

I So to highlight how ludicrous it was people started attaching
it to emails

I Technically if said emails were sent outwith the US such
people could have been prosecuted

--

The following is classified as munitions by
the US state department:

#!/bin/perl -sp0777i<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<j]dsj
$/=unpack(’H*’,$_);$_=‘echo 16dio\U$k"SK$/SM$n\EsN0p[lN*1
lK[d2%Sa2/d0$^Ixp"|dc‘;s/\W//g;$_=pack(’H*’,/((..)*)$/)

Security

T-Shirt

Security

Tattoos

Security Model

We will assume

I Wherever you are in the world you have access to
cryptographic protocols and algorithms

I There are a set of nodes which share resources
I Resources may be physical or data/programming objects

I Communication is via message passing only, and hence access
to shared resources occurs via message passing

I The nodes are connected via a network which may be
accessed by any enemy

I An enemy may copy or read any message transmitted through
the network

I They may also inject arbitrary messages, to any destination
purporting to come from any source

Security

Policies and Mechanisms

I There is a distinction between a security policy and a security
mechanism

I Security policies are independent of the security mechanisms
used with that policy

I A system cannot be secured using only security mechanisms

I For example, the door to your accommodation is likely
secured using a lock and key, that is the security mechanism

I But it is near useless without the accompanying policy:
I The last person to leave the building should lock the door

Security

Threats and Attacks

I For most types of network, and certainly wireless networks, it
is generally obvious that an attacker wishing to obtain private
information can simply listen in on all messages

I Doing so means that it is relatively simple to construct a
computer that would simply log all messages between
communicating computers

I Depending on the application simply knowing the contents of
some messages may be enough, otherwise the attacker may
need information about the distributed algorithm in question
in order to construct information from the data in the
messages that were recorded

Security

Threats and Attacks

I A slightly more elaborate attack is to construct a server in
between the client and the intended server

I If the client does not authenticate the server, then it may send
private information to what it believes to be the intended
server

I Often the fake server will then log the information sent to it,
but then also forward it on the real server in question

I Thus the attack is non-trivial to detect.

I This is a common technique for obtaining web-passwords

Security

I Third party “Certificate Authorities” issue digital certificates
containing encryption keys to verify the identity of secure
websites

Security

Threats and Attacks
I Threats and attacks fall into three broad categories:

1. Leakage
I The acquisition of data by unauthorised entities

2. Tampering
I The alteration of data by an unauthorised entity

3. Vandalism
I Distruption to the service in question without gain to the

perpetrators

Security

Threats and Attacks
I We can further distinguish attacks in a distributed system by

the way in which communication channels are misused:
1. Eavesdropping

I Obtaining copies of messages without authority

2. Masquerading
I Sending or receiving messages using the identity of another

process/entity without their authority

3. Message Tampering
I Intercepting messages and altering them before forwarding

them on to their intended recipient

4. Replaying
I Storing intercepted messages and sending them at a later

date. This attack can be effective even when used against
authenticated and encrypted messages (think of the two
generals problem)

5. Denial of Service
I Flooding a service with requests such that it cannot handle

legitimate requests

Security

Information Existence

I Regardless of how strong your encryption may be, the
detection of a message transmitted between two processes
may leak information

I The mere existence of such a message may be the source of
information.

I For example a flood of messages to a dealer of a particular set
of stocks may indicate a high-level of trading for a particular
stock

I One possible defence is to regularly send nonsense/ignorable
messages

Security

Trade-offs

I Ultimately all security measures involve trade-offs

I A cost is incurred in terms of computational work and network
usage for use of cryptography and other protocols

I Where a security measure is not correctly specified it may
limit the availability of the service for legitimate users/uses

I These costs must be stacked up against the threat or cost of
failure to maintain security

I Generally we wish to avoid disaster and minimise mishaps

Security

Assume the worst

I Interfaces are exposed distributed systems are designed such
that processes offer a set of services, or an interface. These
interfaces must be open to allow for new clients. Attackers
therefore are able to send an arbitrary message to any
interface

I Networks are insecure An attacker can send a message and
falisfy the origin address so as to masquerade as another user.
Host addresses may be spoofed so that an attacker may
receive a message intended for another

I Algorithms and program code is available to attackers
Messages sent may be intercepted but that may not be useful
since to make sense of the message an attacker may need to
know the purpose/protocol within which the message is sent.
Assume that that may be the case

Security

Assume the worst

I Attackers may have access to large resources Do not therefore
rely on the fact that you may compute something faster than
an attacker, or that an attacker has a limited timeframe in
which their attack may be valid/dangerous/worthwhile

I Assume all code may have flaws the part of your software
responsible for security must be trusted. Often called the
trusted computing base. It should be minimised, for example
application programmers should not be trusted to protect
data from their users

Security

Cryptography

I Modern Cryptography relies on the use of algorithms which
distort a message and reverse that distortion using a secrets
called keys

I A simple substitution cyper is an example of this:
I In this case the key is the mapping of characters:

I a 7→ f , b 7→ x , c 7→ j , . . .

I Today’s encryption techniques are believed to have the
property that the decryption key cannot be feasibly guessed
using the cypertext (the encrypted message)

Security

Cryptography
I There are two main algorithms in use:

1. shared secret keys
I both parties must share knowledge of the secret key and it

must not be shared with any other party

2. public/private key pairs
I The sender uses the receiver’s public key to encrypt the

message.
I The encryption cannot be reversed by the public key and can

only be reversed by the receiver’s private key
I The sender needs to know the receiver’s public key but need

not know the receiver’s private key
I Anyone may know the receiver’s public key but the private key

must be known only to the receiver

I Both kinds of algorithms are very useful and widely used
I public/private key algorithms require 100/1000 times more

processing power
I The lack of need for initial secure transfer of the private key

often outweighs the disadvantage

Security

Some Notation and Characters
I Alice and Bob are participants in security protocols

I Alice has the secret key KA and Bob the secret key KB

I They have a shared secret key KAB

I Alice has a private key KApriv and a public key KApub

I {M}K is a message encrypted with key K

I [M]K is a message signed with key K

I Carol and Dave are extra participants for 3,4 party protocols

I Eve is an eavesdropper

I Mallory is a malicious attacker

I Sara is a server

Security

Scenario 1. Secure communication

I Cryptography can be used to enable secure communication

I In this instance each message is encrypted and can only be
decrypted with the correct secret key

I So long as that secret key is not compromised then secrecy
can be maintained

I Integrity is generally maintained using some redundant
information within the encrypted message, such as a checksum

Security

Scenario 1. Secure communication

I Alice wishes to send some secret information to Bob

I If they share the secret key KAB then:

I Alice uses the key and an agreed encryption algorithm
E (KAB , M) to encrypt and send any number of messages
{Mi}KAB

I Bob decrypts the messages using the corresponding
decryption algorithm D(KAB , M)

I Two problems:

1. How can Alice initiate this communication by sending the
secret key KAB to Bob securely?

2. How does Bob know that a message {Mi} isn’t a copy of an
earlier encrypted message sent by Alice but intercepted by
Mallory?

Security

Scenario 2. Authentication

I Cryptography can be used to authenticate communication
between a pair of participants

I If there is a shared secret key known only to two parties, then
a successful decryption of a received message requires that the
message was originally encrypted using the appropriate key

I If only one (other) party knows of that secret key then we can
deduce from whom the message originated

Security

Scenario 2. Authentication

I Alice wishes to communicate with Bob

I Sara is a securely managed authentication server

I Sara stores a secret key for each user, each user knows (or can
generate from a password) their own secret key.

I Sara may generate a ticket which consists of a new shared key
together with the identity of the participant to whom the
ticket is issued

Security

Scenario 2. Authentication
I Steps to secure communication:

1. Alice sends a request to Sara stating who she is and requesting
a ticket for secure communication with Bob.

2. Sara creates a new secret key KAB to be shared between Alice
and Bob. Sara encrypts the ticket using Bob’s secret key and
sends that together with the secret key all encrypted with
Alice’s secret key {({ticket}KB

, KAB)}KA

3. Alice decrypts this message and obtains the shared secret key
and a message containing the ticket encrypted using Bob’s
secret key. Alice cannot decrypt this ticket message

4. Alice sends the ticket together with her identity and a request
for shared communication to Bob

5. Bob decrypts the ticket: {(KAB , Alice)}KB
, confirms that the

ticket was issued to the sender (Alice). Alice and Bob can then
communicate securely using the (now) shared secret key KAB .
Generally the key is used for a limited amount of time before a
new one is requested from Sara.

Security

Scenario 2. Authentication
I This is a simplified version of Needham and Schroeder

algorithm which is used in Kerberos system (developed at
MIT and used here)

I The simplified version does not protect against a replay
attack, where old authentication messages are replayed

I It is used within organisations since the individual private
keys, KA, KB etc, must be shared between the authentication
server and the participants in some secure way

I It is therefore inappropriate for use with wide area applications
such as eCommerce

I An important breakthrough was the realisation that the user’s
password need not be sent through the network each time
authentication is required. Instead “challenges” are used

I When the server sends Alice the ticket and new shared private
key it encrypts it with Alice’s own private key. An attacker
pretending to be Alice would be defeated at this point

Security

Scenario 3. Authenticated Communcation with Public Keys

I Assuming that Bob has generated his own public/private key
pair KBpub, KBpriv then Alice and Bob can securely set up a
shared private key KAB

I We also assume that there is some public-key certificate
system such that Alice can obtain Bob’s public key in a way
that she is confident that it is indeed Bob’s public key

1. Alice obtain’s Bob’s public key KBpub

2. Alice creates a new shared key KAB and encrypts it using
KBpub using a public-key algorithm. This she sends to Bob
{KAB}KBpub

3. Bob decrypts this using the appropriate private key to obtain
the shared private key KAB . Shared communication can now
take place

Security

Scenario 3. Authenticated Communcation with Public Keys

I This is a hybrid cryptographic protocol and is widely used as it
exploits useful features of both public-key and secret-key
encryption algorithms

I The slower public-key algorithm is used to set up the speedier
secret-key communication

I Problem:
I The distribution of public keys. Mallory may intercept Alice’s

initial request to obtain Bob’s public key and simply send Alice
their own public key.

I Mallory then intercepts the sending of the shared key which
they copy and then re-encrypt using Bob’s real public key and
forward it to Bob.

I Mallory can then intercept all subsequent messages since they
have the shared secret key. They may need to in order to
forward the messages on to Bob and Alice depending on the
delivery mechanism.

Security

Digital Signatures
I Cryptography can be used to implement digital signatures
I Alice can encrypt a message using Bob’s public key such that

only Bob can decrypt the message
I Alice can also encrypt the message using her own secret key
I Anyone can decrypt the message so long as they know Alice’s

public key
I Provided we can be sure that the public key in question really

is that of Alice’s we now know that the message must have
originated from Alice, since only Alice knows Alice’s secret key

I Rather than encrypt the entire message Alice can compute a
digest of the message, where a digest is similar to a checksum
except that two distinct messages are very unlikely to have the
same digest value

I This digest is encrypted and attached to the message, the
receiver can then check that the unencrypted digest matches
the (receiver computed) digest of the contents of the message

Security

Scenario 4. Digital Signatures
I Alice wishes to sign a document M so that any subsequent

receiver can be sure that it originated from Alice

1. Alice computes a fixed length digest of the document
Digest(M)

2. Alice encrypts the digest with her private key and attaches the
result to the message M, {Digest(M)}KApriv

3. Alice makes the document with signature available
4. Bob obtains the signed document, extracts M and computes

d = Digest(M)
5. Bob decrypts {Digest(M)}KApriv

using KApub and compares the
result to d , if they match the signature is valid.

Security

Scenario 4. Digital Signatures
I We have three requirements of digital signatures

1. Authentic It convinces the recipient that the signer deliberately
signed the document and it has not been altered by anyone else

2. Unforgeable It provides proof that no one else deliberately
signed the document. In particular the signature cannot be
copied and placed on another document

3. Non-repudiable The signer cannot credibly deny that the
document was signed by them

I Note that encryption of the entire document, or its digest,
gives good evidence for the signature as unforgeable

I Non-repudiable is the most difficult to achieve for digital
signatures. A signer may simply deliberate disclose their secret
key to others and then claim that anyone could have signed it

I This can be solved through engineering but is generally solved
through social contract “If you give away your secret key you
are liable”

Security

5. Certificates

I Suppose Alice would like to shop with Carol

I Carol would like to be sure that Alice has some form of bank
account

I Alice has a bank account at Bob’s bank

I Bob’s bank provides Alice with a certificate stating that Alice
does indeed have an account with Bob.

I Such a certificate is digitally signed with Bob’s private key
KBpriv and can be checked using Bob’s public key KBpub

Security

5. Certificates

I Now suppose Alice wished to carry out an attack such that
she convinced Carol that someone else’s account was owned
by herself

I This is quite simple, Alice only requires to generate a new
public-private key pair KBprivFake , KBpubFake

I She then creates a certificate falsely claiming that Alice is the
owner of some account and signs it using KBprivFake

I If she can convince Carol that KBpubFake is the true public key
of Bob’s bank, then this attack should work no problem

Security

5. Certificates

I The solution is for Carol to require a certificate from a trusted
fourth party, Dave from the Bankers’ Federation, whose role it
is to certify the public keys of banks

I Dave issues a public-key certificate for Bob’s public key
KBpub. This is signed using Dave’s private key KDpriv and can
be verified using Dave’s public key KDpub

I Of course now we have a recursive problem, since now we
need to authenticate that KDpub is the legitimate public key of
Dave from the Bankers’ federation.

I We break the recursion by insisting that at some point Carol
must trust one person, say Dave, and to do so may require to
meet them in person.

I Note that Carol only has to trust Dave in order to verify bank
account certificates from a variety of banks

Security

5. Certificates
I To make certificates useful, we require:

1. A standard format such that certificate issuers and users can
construct and interpret them successfully.

2. Agreement on the way in which chains of certificates are
constructed and in particular the notion of a trusted authority

I In addition, we may wish to revoke a certificate, for example if
someone closes their account

I This is problematic since once the certificate is given it can be
copied and stored etc

I The usual solution is for the certificate to have an expiration
date, meaning that the holder of the certificate must
periodically renew it (in the say way that one renews a
passport)

Security

Cryptographic Algorithms
I Until now we have just assumed there is some method of

encrypting the plaintext into the corresponding cyphertext
using a particular key

I Additionally that there is some inverse operation to decrypt
the cyphertext back into the original plaintext, using the same
or corresponding decryption key

I The encryption depends on two things, the method E and the
key K

I A message M has an encrypted version {M}K if:
I {M}K = E (K , M)

I The mathematically minded can think of an encryption
algorithm as describing a (large) family of encryption
functions from which one is selected by any given key

I Decyption of course gives the original message when used
with the correct key

I M = D(K ′, {M}K)

Security

Symmetric Algorithms

I Shared secret key, or symmetric algorithms use the same key
for decryption as for encryption, such that:

I M = D(K , E (K , M)) or M = D(K , {M}K)

I It should be the case that the inverse function
M = E−1({M}K) is so hard to compute as to be infeasible

I However both E (K , M) and D(K , {M}K) should be relatively
easy to compute

I Such functions are known as one-way functions

Security

Defence — symmetric algorithms

I Whilst a strong one-way function defends against an attack
which attempts to discover M given {M}K

I It does not necessarily defend against an attack which seeks
to discover K given M and {M}K (and crucially E)

I This has been an important attack and was used heavily
during World War II to break the Nazi enigma encryption
scheme

I The simplest and highly effective attack is a brute-force
attack in which all keys are attempted, computing E (K , M)
to see if it matches {M}K

I The number of possible keys depends on the length of K , if it
has N bits then there are 2N possibilities (though you need
only try 2N−1 on average.

Security

Block Ciphers

I Most algorithms operate on a fixed size of block

I For larger messages we split it up into a number of blocks and
encrypt each one in serial, independently

I Hence the first block is available for transmission as soon as it
is encrypted

I However this is a slight weakness, since the attacker can
recognise repeated patterns and infer the relationship to the
plaintext

Security

Cipher Block Chaining

I In Cipher Block Chaining each block is combined with the
precedeing block.

I Note that this still means the previous block may be
transmitted as soon as it is ready

I Generally XOR is used, if we have block N of plaintext and
{MN−1}K of cipherext, then block N is encrypted as:
{MN}K = E (K , N ⊕ {MN−1}K)

I Upon decryption, each block is xor’ed with the preceding
block, this works since xor is its own inverse

I This is intended to prevent identical portions of the plaintext
from encrypting to identical portions of ciphertext

I But there is a slight weakness at the start of each stream of of
blocks

I To prevent this we insert a different piece of plaintext in front
of each message, known as the initialisation vector.

Security

Cipher Block Chaining

Security

Cryptographic Algorithms

I There are many well designed cryptographic algorithms such
that E (K , M) = {M}K such that the value of M is concealed
and computing K requires a brute-force attack

I Confusion Non-destructive operations such as xor and circular
shifting are used to combine each block of plaintext with the
key

I This confuses the relationship between M and {M}K
I If the blocks are larger than a few characters then this defeats

attempts at cryptanalysis based on character frequencies

I Diffusion There is usually repetition and redundancy in the
plaintext. Diffusion is used to dissipate regular patterns that
result by transposing portions of each plaintext block.

Security

TEA — Secret Key Algorithm

I k is the key of length four (64-bit integers)

I text is originally the plaintext to be encrypted, two 64-bit
integers

1. delta = 0x9e3779b9, sum = 0

2. y = text[0], z = text[1]

3. for (n= 0; n < 32; n++)

4. sum += delta

5. y += ((z << 4) + k[0]) ⊕ (z+sum) ⊕ ((z >> 5) + k[1])

6. z += ((y << 4) + k[2]) ⊕ (y+sum) ⊕ ((y >> 5) + k[3])

7. text[0] = y; text[1] = z;

Security

TEA — Tiny Encryption Algorithm

I On each of the 32 rounds the two halves of the text are
repeatedly combined with shifted portions of the key and each
other

I The xor and shifted portions of the text provide confusion

I Shifting and swapping of the two portions of the text provide
diffusion

I The non-repeating constant delta is combined with each
portion of the text on each cycle to obscure the key in case it
might be revealed by a section of the text which does not vary

Security

TEA — Decryption

1. delta = 0x9e3779b9, sum = delta << 5

2. y = text[0], z = text[1]

3. for (n= 0; n < 32; n++)

4. z -= ((y << 4) + k[2]) ⊕ (y + sum) ⊕ ((y >> 5) + k[3])

5. y -= ((z << 4) + k[0]) ⊕ (z + sum) ⊕ ((z >> 5) + k[1])

6. sum -= delta;

7. text[0] = y; text[1] = z;

Security

DES

I The Data Encryption Standard

I Is mostly of historical importance now since its keys are
56-bits long

I Too short to resist brute-force attack using modern hardward

I Maps a 64-bit plaintext into a 64-bit ciphertext using a 56-bit
key

I The algorithm has 16 dependent stages known as rounds

I Algorithm was developed in 1977 and was slow on machines
of the time when written in software

I However the algorithm could be implemented in hardware and
was incorporated into network interface chips

Security

DES — Cracked

I In June 1997 it was succesfully cracked in a brute-force attack

I The attack was performed as part of a competition to
illustrate the need for 128-bit long keys

I About 14,000 computers took part in a distributed
computation to crack the 56-bit key

I The program was aimed at cracking a known
plaintext/ciphertext pair, to obtain the unknown key (and
then use that to decrypt new ciphertext)

I Later, the EEF developed a machine that could successfully
crack 56-bit keys in around three days

Security

Triple DES

I One solution to the weakness of 56-bit keys is to simply apply
the algorithm more than once with more than one key

I E3DES(K1, K2, M) = EDES(K 1, DDES(K2, EDES(K1, M)))

I This is equivalent to the strength of a single key with a length
of around 112-bits

I But it is slow since it must be applied three times

I And DES is already considered slow by modern standards

Security

IDEA

I International Data Encryption Algorithm

I Uses 128-bit keys

I A successor to DES, its algorithm is based on the algebra of
groups, and has 8 rounds of xor , addition modulo 216 and
multiplication

I Like DES uses the same function for encrytion as for
decryption, which is useful if it is to be implemented in
hardware.

I IDEA has been analysed extensively, and no major weaknesses
have been found. It is also around three times faster than the
speed of DES (and hence 9 times faster than triple-DES)

Security

AES

I US National Institute for Standards and Technology invited
proposals for AES (advanced encryption standard)

I The winner, the Rijndael algorithm, was selected from 21
algorithms submitted by cryptographers in 11 countries

I The cipher has variable block and key lengths, with
specifications for keys with lengths 128, 192 or 256 bits to
encrypt blocks with the same lengths

I The number of rounds varies from 9 to 13

I The algorithm can be implemented efficiently on a wide range
of processors and in hardware

Security

Public-key Algorithms

I There are relatively few practical public-key algorithms

I They depend on the trap-door functions of large numbers to
produce keys

I The keys Ke and Kd are a pair of very large numbers

I The encryption performs an operation such as exponentiation
on one of them

I Decryption is a similar function using the other key.

I If the exponention uses modulo arithmetic it can be shown
that the result is the same as the original value of M, so:

I D(Kd , E (Ke , M)) = M

I RSA is the most widely known public-key algorithm

Security

RSA

I Rivest, Shamir and Adelman, based on the product of two
very large prime numbers

I Again despite extensive attempts and investigations, no flaws
have been found

Security

RSA, to find a key pair Ke , Kd

1. We need to find three numbers e, d and N, the keys will be
Ke = e, N and Kd = d , N

2. Choose two large prime number P and Q both larger than
10100 (a googol)

I N = P × Q
I Z = (P − 1)× (Q − 1)

3. For d choose any number that is relatively prime with Z
(gcd(d , Z) = 1)

4. To find e, solve: e × d = 1 mod Z
I So e × d is the smallest element in the series

Z + 1, 2Z + 1, 3Z + 1, . . . which is divisible by d

Security

RSA

I So the function to encrypt a single block of plaintext M is

I E ′(e, N, M) = Me mod N

I So the largest length of M is log2(N) bits

I And to decrypt a block of text is:

I D ′(d , N, c) = cd mod N

I Rivest, Shamir and Adelman proved that E ′ and D ′ are
mutual inverses, so E ′(D ′(x)) = D ′(E ′(x)) = x for all values
of P in the range 0 ≤ P ≤ N

I Note that encryption requires e and N so Ke = e, N

I And decryption requires d and N so Kd = d , N

Security

RSA — Concrete Example

1. Choose P and Q as very large prime numbers
I P = 5 and Q = 11

2. N = P × Q and Z = (P − 1)× (Q − 1)
I N = 55 and Z = 40

3. For d choose any number that is a relative prime of Z
I d = 7

4. To find e solve e × d = 1 mod Z
I 41, 81, 121, 161, . . .
I e × 7 = 161, e = 23

5. The numerical value of a block must be less than N, so the
length of a block k must be such that 2k < N here we will be
forced to choose k = 5

Security

RSA — Concrete Example
I So to encrypt the block M with numerical value 24 using the

Ke = 23, 55

1. E ′(e, N, M) = Me mod N
2. E ′(e, N, M) = 2423 mod N
3. E ′(e, N, M) = 55572324035428505185378394701824 mod 55
4. E ′(e, N, M) = 19

I To decrypt with Kd = 7, 55

I D ′(d , N, c) = cd mod N

I D ′(d , N, c) = 197 mod N

I D ′(d , N, c) = 893871739 mod 55

I D ′(d , N, c) = 24

I tried first with M = 21 but 2123 mod 55 = 21

Security

RSA — Cracking
I Given that the public key Ke contains N, to figure out e and

d (and hence Kd) an attacker requires to factorise N
I In our example the prime factorisation of 55 is relatively easy

to figure out 5, 11
I The attacker would therefore know Z , they wouldn’t know the

choice of d but could brute-force try all possibilities
I In practice of course P and Q are chosen to be > 10100 so

N > 10200, hence factorisation of N is extremely
computationally expensive

I Factorisation of a number as large as 10200 would take 4
billion years using the best known algorithm on a computer
that performs 1 million instructions per second.

I Intel Core i7 Extreme Edition 3960X (Hex core) = 177,730
MIPS

I (4000000000× 31556900)/177730000000 = 710221
I So 710000 years

Security

RSA Challenges

I The RSA Corporation issued a challenge to factor numbers of
more than 100 decimal digits

I Numbers up to 232 decimal digits (768 binary digits) have
been successfully factored

I Though there is still a 212 decimal digit (704 binary digits)
number which remains unfactored

I Keys as large as 2048 bits are used in some applications

I All of this security somewhat depends upon the currently
known best factoring algorithms not being improved (either
because it is impossible or simply because no-one figures out
how)

Security

Public-key algorithms

I It is worth noting a problem for all public-key cryto-algorithms

I An attacker as an unlimited supply of ciphertexts with known
plaintexts

I Since the encryption is done using the public key and the
attacker has access to the public key they can simply create as
many plaintext/ciphertext pairs as they require

I They may even do so with any given text, for example the
zero plaintext

I Additionally if the unknown encrypted message was really
short, one could simply brute-force try all messages of the
same length encrypting them to see if they match the
encrypted message

I This is obviously defeated by making sure that each message is
at least as long as the key such that this form of brute-force
attack is less feasible than a brute-force attack on the key

Security

XKCD

Security

Zardoz Jeff Atwood @CodingHorror recently blogged about his
Surface RT authentication:

Any Questions

Any Questions?

