
Level 10 Coursework Distributed Systems 2012

Allan Clark

October 2012

1 Administration

Assigned Date: Monday October 8th 2012
Due Date: 4pm Thursday November 8th 2012

The expectation is that you should spend approximately 2-3 hours per
week on practical work. You have a little over four weeks, hence 8-12 hours
work on this practical should be a reasonable amount of time, though of
course this is subject to variability depending upon the student.

2 Part 1

2.1 Introduction

In this practical you will implement a simulation of a simple distributed
algorithm. This will allow you to reason about a distributed algorithm
prior to development and deployment on the potentially large scale of a
real distributed system. You are to write a program which implements
the Routing Information Protocol discussed in the networking fundamentals
part of the course. This is a useful distributed algorithm which does not aim
to have the exactly correct answer at all times but rather converge towards
the current correct answer in response to changes. This can be adapted to
many real world situations, for example content distribution.

Your program will need to take as input the description of the network, a
set of addresses which each router node can reach directly and a set of initial
events. The output of your program will be the set of events which follow,
plus the resulting routing information table at each node of the network.

This is an individual practical, work may be discussed but all of the
work you submit must be your own. You should submit a single source
file containing your solution and answers to the questions at the end in
comments.

The input of the program will be a network description, including the
set of addresses which each router node can access directly and the links
between each router node. Finally there will be a list of ‘send’ commands
to initiate the algorithm. Frequently this will be a single command.

1

when a table is received by process p1 from process p2:
for each row in the received table:

if address is not known by p1:
add the address to p1’s table with the link "p2" and a
cost of one more than the received cost

if 1 + cost for the address is better than the current known one:
place this row in p1’s table with the link "p2" and a
cost of one more than the received cost

if address is known by p1 with a link of p2 then:
if the cost for p2 is not exactly one less than p1’s cost:

act as if this address was unknown to p1
if process p1 has updated its table in any way:

send updated table to all links

Figure 1: Pseudo code for our version of the Routing Information Protocol.

The practical is designed such that your program will accept textual
input and produce textual output. This means both that you are free to
choose your implementation language and that I may automate evaluation of
your solution to some extent. Whatever language you choose to implement
your solution in you should make sure that it can be compiled and run on a
standard DICE desktop.

2.2 Assumptions

We will assume that everything occurs within a 30 second time frame, hence
your algorithm need not implement the periodic sending by each process of
its Router Information Table. The pseudo code for the basic algorithm
which we will follow is given in Figure 1.

We will further assume that no messages are dropped. Dropped messages
are covered by the periodic sending of router tables and since we do not wish
to model that we will assume that all messages eventually arrive at their
destination.

We further assume that messages on the same link arrive in First-In-
First-Out order, but only for messages on the same link, so if node p1 sends
node p2 a message it will necessarily get there before any future message
sent by node p1 to node p2. However, node p3 may subsequently send a
message to node p2 which arrives before the message from node1.

2.3 Input

Figure 2 shows a very simple input file. The input is a series of lines, one
command per line with empty lines ignored. The network is described as a
list of node commands and a list of link commands. Each node command

2

node p1 1
node p2 2
node p3 3
node p4 4 5

link p1 p2
link p1 p4
link p2 p3
link p3 p4

send p1

Figure 2: A simple example input file

is of the form node name address*, where node is a keyword, name is an
alpha-numeric string giving the name of the node. Finally a list of integer
addresses separated by white space, but on the same line. Link commands
are of the form link name1 name2, specifying that there is a bi-directional
link between nodes name1 and name2. In some versions of the RIP algorithm
links are given names which are referred to in the router information tables.
Here we will always associate a table with a given node and hence the link
will be entirely specified by the name of the destination node.

Finally in order to kick start the algorithm there will be at least one
send command. This will specify less than a send event. It has the form
send name where send is a keyword and name is the name of some node in
the network. It simply states that the algorithm should be initiated by the
given node sending its initial router information table to all of its links.

Finally your program may accept input either at stdin or as an input
filename given as an argument on the command-line, please make clear which
it is.

2.3.1 No parsing input

Since parsing textual input is not really the point of the practical it can be
skipped. In this case put your input directly into the source code. Your
code will be automatically tested however so please make sure that I can
automate this. That format is akin to the textual input, so if you are doing
this in Java the following is a good start:

private class InputNode {
String name;
int local_addresses;
public InputNode (String n, int la[]){

this.name = n;

3

this.local_addresses = la;
}

}
private class InputLink {

String left_name;
String right_name;
public InputLink (String nl, String nr){
this.left_name = nl;
this.right_name = nl;

}
}
private class InputCommand {

String command_name;
String process_name;
public InputLink (String c, String p){
this.command_name = c;
this.process_name = p;

}
}

private class Input{
List<InputNode> input_nodes = new LinkedList<InputNode>();
List<InputLink> input_links = new LinkedList<InputLink>();
List<InputCommand> input_commands = new LinkedList<InputCommand>();
public Input (){
... input statements ...

}
}

To change the input, the line ... input statements ... is changed
to reflect the network, for example, our simple network would be added as:

input_nodes.add(new InputNode("p1", {1}));
input_nodes.add(new InputNode("p1", {2}));
input_nodes.add(new InputNode("p1", {3}));
input_nodes.add(new InputNode("p1", {4,5}));

input_links.add(new InputLink("p1", "p2"));
input_links.add(new InputLink("p1", "p2"));
input_links.add(new InputLink("p1", "p2"));
input_links.add(new InputLink("p1", "p2"));

input_commands.add(new InputCommand("send", "p1");

4

You are of course then free to translate these simple types into your own
classes and data representations for the running of the actual algorithm. The
key point is merely that in order to test your program on a set of sample
networks I should be able to copy and paste an input description of this
form into your source code. If you are doing this in something other than
Java please allow for an analogous set of commands and make clear what
those commands are.

2.4 Output

The output of your program should be a list of events plus the final router
information tables for all router nodes in the network. Each event is either a
send or a receive, between two processes. A send event should be formatted
as:

send p1 p2 (1|local|0) (2|p3|1)

More formally this is the keyword ‘send’ followed by two white-space
separated node identifiers followed by the Router Information Table that is
sent between the two. Router information tables are formatted as a list of
rows, with each row in parentheses. A row is formatted as: (address |
link | cost) Where address is an integer address, link is the process to
which to send (for which there must be a link in the network) and cost is
an integer stating how many links are required to get to the router which
can send to the address directly. The link portion may also be the keyword
local which indicates that the router to which the table is associated can
deliver directly to the given address.

A receive command is given in exactly the same way but using the
receive keyword:

receive p1 p2 (1|local|0) (2|p3|1)

Which means that process p2 receives the given table from process p1.
Figure 3 gives an example valid output file for a simple network. Note

that although this is a valid output file it is not necsssarily a correct output
file. Your output may be directed to a file or to stdout. Again please make
clear which and also make sure that your program does not generate other
data (such as debug statements) to the same place as the actual output.
Though you can start a line-comment with a # character.

Note that in many descriptions or implementations of the Router In-
formation Protocol the links are given names. Here we uniquely determine
the link from the process to which the Router Information Table belongs
and the process named as the link process. Also note that the initial ‘send’
commands specified in the input are not logged, but they trigger a ‘send’
event from one process to all the processes to which it is linked and those
send events should be logged.

5

send p1 p2 (1|local|0) (2|p3|1)
receive p1 p2 (1|local|0) (2|p3|1)
table p1 (1|local|0) (2|p3|1)
table p2 (1|p1|1) (2|p3|2)

Figure 3: An example of valid (note not correct) output for a simple network.

2.5 Clarifications

• Question: Must I code my solution in Java?

• Answer : No, you may choose which ever programming language you
prefer. However you should make sure that your solution can compile
and run on a standard DICE machine. Additionally either you should
allow text input, or provide a data-style input analogous to that of the
Java version shown above. If you are in doubt please feel free to email
me and ask.

• Question: Should I use threads in my solution?

• Answer : Threads is one way to simulate multiple communicating
processes. But you are free to simply have a queue of events and an
object for each process. You can then simply have a queue manager
that takes events from the queue and calls the appropriate method on
the object representing the process at which that event takes place.
For example you could have a receive method on a process object
which then queues further send events.

• Question: How should my simulator handle invalid network descrip-
tions

• Answer : You needn’t worry about validating or coping with invalid
network descriptions. For example for every link command the two
named nodes should always have associated node commands.

3 Part 2

Try to use your simulator to help answer the following questions:

1. When a process p1 updates its table in response to a table received
from process p2, is it necessary that process p1 sends its updated table
back to process p2? Explain the reasoning behind your answer.

6

2. Whether you answered yes or no to the first part, does requiring p1
to return its updated table to p2 increase or decrease the number of
events required for the algorithm to converge, or does it depend on the
network and/or ordering of events? Try to justify your answer with
logic and/or statistics from your simulator.

4 What To Submit

You must submit the source code of your solution to the problem. The source
code should compile and run on a standard DICE desktop. This practical is
not intended to evaluate your coding ability, however the portion(s) of your
code which do the logic of the Router Information Protocol itself should be
well marked and documented.

Your answers to the additional questions should be given as comments
in your source code. Please mark these clearly.

4.1 Evaluation

You will be evaluated primarily on how well your solution performs on sam-
ple networks. The key points are:

1. The resulting Router Information Tables should be correct.

2. No events should occur out of order, there is some scope for the order
to be different as in a real network. However no event should violate
the happens-before relation. In particular no process should receive
a table before it is sent, nor send information gleaned from a table it
has not yet received.

3. Your answers to the additional questions.

5 Grading

The entire course work is graded out of 25. There are 20 marks available
for your simulator implementation and 5 for your answers to the additional
questions.

7

