Coursework: Distributed Systems 2014

January 2014 (v1.1)
(revised, February 7, 2014)

1 Administration

e Assigned Date: Monday January 27th 2014
e Due Date: 4pm Thursday March 13th 2014

The expectation is that you should spend approximately 2 hours per week on practical work. You
have a little over six weeks, hence 8-12 hours work on this practical should be a reasonable
amount of time, though of course this is subject to variability depending upon the student.

This is an individual coursework: work may be discussed but all of the work you submit must be
your own.
This coursework has two parts:

1. A programming exercise (described in Section 2)

2. Written theory questions (described in Section 3).
For the programming part, you should submit a single source file containing your solution. For
the theory part, please put your answers into a single PDF with questions numbers 1,2,3,4
clearly marked. Submission instructions are in section 4, and a summary of the grading criteria
and marking scheme is in section 5. Some answers to common questions are collected at the
end in Section 6.

2 Programming Exercise

2.1 Introduction

In this practical you will implement a simulation of two distributed algorithms. A simulator will
allow you to reason about a distributed algorithm prior to development and deployment on the
potentially large scale of a real distributed system. You are to write a program which:
1. implements Lamport’s clocks as discussed in the Time and Global State part of the
course. This is a useful service that underlies many distributed algorithms.
2. implement a distributed mutual exclusion algorithm for controlling shared access to a
resource. For full credit the algorithm used must be fair.

Both parts rely on material covered in lectures in Weeks 3-5. This material can also be found in
Coulouris (chapter 14-15) or other distributed systems textbooks listed in the course web page.

Parts 1 and 2 can be done independently if a mutual exclusion algorithm that does not rely on
clocks is used, such as ring, token or Maekawa's voting algorithm; however, these algorithms
are not fair and so will not receive full credit. To ensure fairness, Part 2 should build on part 1
(using Lamport clocks to implement the Ricart/Agrawala algorithm or to ensure fairness in
Maekawa's voting algorithm). The Ricart/Agrawala algorithm discussed in class that uses
Lamport clocks is probably the easiest choice of fair algorithm to implement in part 2; if you
would like to try implementing some other fair algorithm, please check this with us.

Your program will need to take as input a description of several process schedules (i.e., lists of
send, receive or print operations). The output of your program will be a linearization of these
events in the order actually performed, annotated with Lamport clock values.

2.2 Input format and description of behavior

The input of the program will be a collection of processes, each with an associated schedule, or
list of operations to perform. The processes are named p1...pn for some n (you may assume
that n is at most 9.) The format of a process is:

begin process pl
operation

operation
end process

where each line contains an operation. Operations include basic operations and mutex blocks.
The possible basic operations are:

e send pN msg (thatis, send message msg to pN)

e recv pN msg (thatis, receive message msg from pN)

e print msg (thatis, print message msg to the terminal)
where msg is any alphanumeric string. We describe mutex blocks later.

The send operation simply sends a message and the process is free to continue executing the
next operation. The recv operation blocks and waits to hear message msg from a given
process. (This means that there can be deadlocks if all processes are waiting to receive and
there are no messages in transit.)

The print operation provides us with a simple form of shared resource among processes. An
individual print operation takes place atomically, but if two processes are concurrently printing
multi-line messages then the results may be interleaved.

Messages can be sent and received, and printing can take place, in any order, provided causality
is respected: that is, the order of events within a process is preserved, and a message is always
sent before it is received. One approach is for your simulator to maintain a pool of messages
including sender, receiver and payload. When a message msg is sent from p1 to p2, we add
messagem = (pl,msg, p2) tothe pool, and when the message is received by p2, m is
removed from the pool. This can be done explicitly by maintaining a set or list of messages in
the simulator, or implicitly by using one thread per process and setting up communication
channels between each pair of threads; in this case, the “pool” is the combined contents of all
message buffers between pairs of threads.

In addition, there is a compound operation called an mutex block. An mutex block is as follows:

begin mutex
basic operation ..
basic operation
end mutex

where each of the enclosed operations is a basic operation (i.e. mutex blocks cannot be nested,
they can only contain sequences of send, receive or print operations). Events in different mutex
blocks should not execute concurrently. Thus, a process that wants exclusive access to the
output terminal (for example to print a multi-line message without being interrupted) should wrap
the print operations in a mutex block. Part of this coursework is to implement a mutual exclusion
algorithm that ensures this.

For convenience, individual print operations occurring outside a mutex block are treated as if
they each are in their own mutex block. Thus, even printing a single line requires exclusive
access to the terminal.

Here is a small example illustrating the input format:

begin process pl
send p2 ml
begin mutex
print abc
print def
end mutex
end process

begin process p?2
print x1
recv pl ml
print x2

send pl m2
print x3
end process p2

This example describes two processes. The first starts by sending a message, then prints
"abc" and "def" to the terminal. The second prints x1, then receives from the first process, then
prints x2, then sends to the first process, then prints x3. Because of the mutex block, the two
print operations performed by p1 should not be interrupted by any other print operations
(particularly x2). Note that the message sent from p2 to p1 is never received; this is fine.

2.3 Output format

The output format is a single log of the events that took place during the simulation run, one per
line, including Lamport clock timestamps. The possible events are:

sent pN msg pM T (thatis, pN sent message msgto pM at local time T)
received pN msg pM T (thatis, pNreceived message msg from pM at local time
T)

e printed pN msg T (thatis, pN printed message msg to the shared terminal at time
T)

Mutex blocks are not reflected explicitly in the log. Your implementation of mutual exclusion may
involve additional special messages being exchanged by processes. These should not be
reported in the log, only those events corresponding to operations in the schedules.

Continuing the example above, the following is a valid output:

printed p2 x1 1
sent pl ml p2 1
received p2 ml pl 2
printed pl abc 2
printed pl def 3
printed p2 x2 3
sent p2 m2 pl 4
printed p2 x3 5

Several other outputs are also possible. However, because of the mutex block, it should not be
possible for p2 to print x2 between the two prints performed by p1.

However, it is OK for the Lamport clock timestamps to be different, as long as they are correct
with respect to the happens-before ordering - this could happen for example if Lamport clocks
are used to support fair mutual exclusion, because this may lead to additional messages being
sent/received (and timestamped) to support acquiring and releasing locks. If so, these

messages should not be reported in the output.

2.4 Further details

The practical is designed such that your program will accept textual input and produce textual
output. This means both that you are free to choose your implementation language and that we
may automate evaluation of your solution to some extent. Whatever language you choose to
implement your solution in you should make sure that it can be compiled and run on a standard
DICE desktop.

2.5 Sample code for parsing input

Since parsing textual input is not really the point of the practical, we provide sample code in Java
to show how this is to be done. The following code can be used verbatim, or you can adapt it to
your language of choice. This is just one approach, but are are free to come up with your own
parsing solution. The key point is that your program should accept input and produce output in
the formats specified above.

// the name of the input file is passed as argument
// when running the programme

BufferedReader in = new BufferedReader (new FileReader (args[0]));
String line = null;
Process p = null; // is a class that holds a group of instructions

// (send, recv, print, mutex..)
// it’s up to you how you want this to be

// for each line of the input file
while ((line = in.readLine()) !'= null) {

// split the line into an array of words
String[] arr = line.trim().split("[1+");

// if the first word is “begin”
if (arr[0].equals ("begin")) {
if (arr[l].equals ("process")) {

// the instructions for a new process will begin
// after this command in the input file

// TODO - create a new process for the next instructions

} else

if (arr[l].equals ("mutex")) {

// after this command all the following instructions
// should be executed “atomically” - as one.

// TODO - treat the starting of an atomic block

} // end of dealing with the begins

// the end commands

if (arr[0].equals("end")) {
if (arr[l].equals ("mutex")) {
// TODO - mark the end of an atomic block
} else if (arr[l].equals("process")) {
// TODO - deal with the end of instructions for a
//process

} // end of ends

// the send instructions

if (arr[0].equals("send")) {
// TODO - deal with the send instruction
// arr[l] is the destination
// arr[2] is the message

// the receive instructions

if (arr[0].equals("recv")) {
// TODO - deal with the receive instruction
// arr[l] is the sender
// arr[2] is the message

// the print instructions
if (arr[0].equals ("print")) {

// TODO - deal with the print instruction
// arr[l] is the payload of the task

} // end of while

in.close();

// now that the file is parsed, you can put to work your processes.
// TODO - execute the instructions associated to each process.

3 Written Theoretical Questions.

P1 @ >
Time

Figure 1: Events for p; and p,.

Q1 [2 marks] Figure 1 above shows events occurring for each of two pro-
cesses, p; and py. Arrows between processes denote message transmission.
Draw and label the lattice of consistent states (p; state, p, state), beginning
with the initial state (0,0).

Q2 [2 marks| Even without a deadlock, a poor mutual exclusion algorithm
may lead to starvation. Give an example of a system which leads to starva-
tion.

Q3 [3 marks] Suppose a distributed system is operating in synchronous
rounds. The network communication graph is given by G. A BFS tree T has
been constructed with root at node r. There is a function f whose value at
any node p is given by p.f, and p.f is known to p.

Give a distributed algorithm that computes the average and maximum of f
over all nodes with O(n) time and message complexity. The computed values
must be known to all nodes.

Q4 [1 mark] Figure 2 shows a graph representing a network, with weights
on edges. What is the weighted diameter of this network? (that is, diameter
of the network, where the weight of an edge represents its length.) Which is

Figure 2: Weighted network graph

the path that realizes the diameter?

What will be the diameter if the graph was unweighted, and what will be
the corresponding path?

4 What To Submit

You must submit the source code of your solution to the programming problem as a single
source code file. The source code should compile and run on a standard DICE desktop. This
practical is not intended to evaluate your coding ability, however the portion(s) of your code
which do the logic itself should be well marked and documented.

Please also include a comment presenting your assumptions, implementation design, any notes
on how to run your code, and anything else relevant for us to better understand your code (in a
concise manner), marked README, at the beginning of your submission file.

Your solutions to the written theory questions should be submitted as a single PDF, with
question numbers marked clearly. (As advertised in a previous version of this coursework, your
answers to the additional questions could also be given as comments at the end of your source
code. If so, please mark these clearly.)

4.1 Evaluation

Your solution will be evaluated primarily on how well your solution performs on various scenarios
(including samples we will make available and test cases we will not provide in advance). The
key points are:

1. No events should occur out of order, there is some scope for the order to be different as
in a real network. However no event should violate the happens-before relation. In
particular no process should receive a message before it is sent.

2. The Lamport clock timestamps must be correct with respect to happens-before ordering.

3. Events in mutex blocks should not occur concurrently. In particular, it should not be
possible for “print” events from two mutex blocks in different processes to be interleaved.

4. Log file must not contain any entries other than the events from the schedule.

5. For full credit, your mutual exclusion solution should be fair with respect to
happens-before ordering (we will assess this by inspection of the code.)

6. Your answers to the written questions

5 Grading

The entire course work is graded out of 25, and broken down as follows:
e Lamport clocks [7 marks]
e Mutual exclusion [10 marks] - at most 5 marks if the mutual exclusion is not fair
e Additional written questions [8 marks]

6 Clarifications

Question: Must | code my solution in Java?

Answer: No, you may choose which ever programming language you prefer. However
you should make sure that your solution can compile and run on a standard DICE
machine.

Question: Should | use threads in my solution?

Answer: Threads are one way to simulate multiple communicating processes. But you
are free to simply have a queue of events and an object for each process. You can then
simply have a queue manager that takes events from the queue and calls the appropriate
method on the object representing the process at which that event takes place. For
example you could have a receive method on a process object which then queues further
send events.

Question: Can | use Java's synchronize keyword to implement mutual exclusion?
Answer: In a multithreaded simulator (see previous question), you will probably want to
use synchronize and probably also Java's concurrency-safe data structure libraries,
to manage access to the simulator's shared state. You could also use synchronize to
implement mutex blocks. However, the point of this coursework is to simulate a
distributed mutual exclusion algorithm, where processes can only communicate with
each other using messages. Therefore, while it is OK to use Java concurrency features
within the simulator, please don't use synchronize in the implementation of mutual
exclusion, instead, implement one of the message-based algorithms.

