
DS Assignment

Release date: 21 February 2020
Assignment deadline: March 24, 2020, 4pm
Feedback return: April 14, 2020

This assignment is worth 25% of the final mark. The assignment is a programming exercise that
will be marked out of 100.

Assignment Description

In this assignment, you have to create a simulation of a wireless network and implement the ring
based Change and Roberts algorithm for leader election among the nodes of the network. You
are given Java code for the Node and the Network classes, with basic methods implemented as
a starting point. You are also given the input file which contains the network; i.e., the nodes with
their neighbors.

System design

Your implementation should simulate a distributed system using multiple threads. Each node
must run on its own thread. Additionally, a different thread will simulate the actions of the
network delivering messages from one node to another. You can only use strings as
messages.

Communication is assumed to be synchronous. Each synchronous round lasts for 20ms. Your
program should simulate this behavior of the network receiving and delivering messages exactly
once every round.

A node is allowed to send messages only to its neighbors as specified in the input file describing
the network graph. It can send at most one message to each neighbor in one round. The
network should enforce these constraints. You are also allowed to use a BROADCAST
message that goes to all neighbors of a node.

Input file specification

There are three types of input files: graph.txt, elect.txt, fail.txt.

The input file graph.txt, contains the network graph. Each line describes a node; the first
the item is the id of the node, and the following ones are its neighbors. The ordering of the rows
gives an ordering of the nodes on the ring (the first follows the last).

The input file elect.txt contains a list of leader elections initiated by different sets of nodes.
These lines start with ELECT followed by the round number, followed by nodes that start
election at that round. For example:

ELECT 5 18 7

Means that in round 5, nodes 18 and 7 start leader election.

The input file fail.txt contains the lines describing nodes failing. The file begins with a single
ELECT statement like the ones in elect.txt. Following this line, there are FAIL lines e.g.

FAIL 100 20

means that at round 100 node 20 fails. A sample set of input files is available on the assignment
page.

Assignments

The assignment is divided into two parts. Your tasks for each part are as follows:

Part A (marks 70/100)

1. Read the network specification from the input file.
2. Construct the ring topology network based on the order in which the nodes appear in the

input file.
3. Implement the Chang and Roberts algorithm for leader election among the nodes

(details of the algorithm can be found in the course slides as well as in the suggested
references); execute leader elections as

Your implementation should have a protocol to simulate the network. Communication must be
synchronous. In your protocol, you should implement features that ensure proper
communication between the nodes. (Hint: Nodes communicate by exchanging messages. At
each round, the network can maintain a “list” of all the messages the nodes want to deliver and
then perform the delivery.)

Part B (marks 30/100)

In the input file, we provide information on node failures. Your task for this part is to
handle such failures in the network. The rounds in which the node fails is mentioned in the input
file. Either the failing node is the current leader or a non-leader node, for as long as the network
is connected, your system should initiate and elect a new leader after the failure. The file may
have one or more elections before the failures. When the network becomes disconnected, your
system can announce that and terminate.

There is no one way to recover from a failure, so the assignment is open ended where you have
to design your own solutions. You will be marked on your approach, ideas and their
implementation rather than perfect outputs.

Messages:

The types of messages the nodes can exchange are the following:
- election messages, when a node announces the initiation of an election process
format: ELECT node_id, where node_id is the id of the node initiating the election process

A node, upon receiving an election message can send two types of messages:
- forwarding messages – if its id is less than the current maximum id or if the node is a
non-participant, as described for the algorithm in class
format: FORWARD max{node_id, received_node_id}, where node_id is the id of the node
forwarding the message and received_node_id is the current maximum id
- leader messages – if its id is equal to the current maximum id
format: LEADER node_id, where node_is the id of the current node

Input

Create a shell script called run.sh. We will run your script with a graph file and an events file,
e.g:

./run.sh graph.txt elect.txt

Or as:

./run.sh graph.txt fail.txt

With the graph file first and events/fail file as second argument. Note that we will try different
input files, so file names can be different (but the order of the files will be the same) and your
code should honor the sequence and handle general file names.

When run.sh is executed, it should compile your code and run it with the given inputs.

Outputs

Your simulator should produce a log file “log.txt” that contains the elected leader. For Part B,
your output must contain the sequence of nodes elected as leaders after each failure. The last

line of the output must be “simulation completed”. For example, a log could be in the following
format:

Part A
Leader Node 9

Part B
Leader Node 9
Leader Node 6
Leader Node 2
simulation completed

Print to screen: In addition, you should print to screen all important events as created and
processed by your program. For example, initiation of elections, node failures, message delivery
etc. Each must be on a separate line, and contain the round number, entities involved and
contents.

Submission Instructions
You are expected to use Java. If you have a strong reason to use a different language, discuss
it with us first. However, we strongly suggest that you use Java, for which we provide code to
help you.

The code will be tested on DICE. If it does not run directly on DICE, we cannot evaluate it.

The submission should contain the following in a single folder:
1. Your source code. NOT just the executable. If the source code is not included in the
submission folder, your submission cannot be evaluated. The source code must be well
commented.
2. A shell script called run.sh. This must compile and run your program when executed, and
should take the input file as a parameter e.g. ./run.sh input.txt
3. A readme file (max 1 page in 12 pt font, 1-inch margin) that contains a summary of any
specific implementation decisions you have made and a description of the logic you followed for
Part B. This is necessary in order to receive full marks (pdf, max 1 page in 12 pt font, 1-inch
margin).

Please notice that if your implementation does not generate the log.txt file with the output
written in it, you cannot be given full marks.

IMPORTANT Output and submissions must conform to specifications given above. For
example, log.txt must be generated and in the format above. All files must be in the top level

folder. Do not submit an IDE (like Eclipse) “project”, and make sure that the files work in flat
source code format. If your submission does not conform to specifications, we will not evaluate
it.

Always use the most recent description on the web page. That is, use the up to date
one on the web page and not a previously downloaded version.

University regulations:

On good Scholarly Practice. Please remember the University requirement as regards all
assessed work. Details about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

Remember, if you use ideas from elsewhere (including other students), cite them. It is easy to
detect when code or descriptions are copied from other students or the web. So avoid doing that
and getting into plagiarism charges.

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

