## Decision Making in Robots and Autonamous Agents

Probabilistic methods: Filtering and Exploration (Following S. Thrun et al, Probabilistic Robotics)

Subramanian Ramamoorthy School of Informatics

1 March 2019

## Probabilistic Robotics

Key idea:
Explicit representation of uncertainty using the calculus of probability theory

Perception<br>Action<br>= state estimation<br>= utility optimization

## Axioms of Probability Theory

$\operatorname{Pr}(A)$ denotes probability that proposition $A$ is true.

$$
\begin{aligned}
& 0 \leq \operatorname{Pr}(A) \leq 1 \\
& \operatorname{Pr}(\text { True })=1 \quad \operatorname{Pr}(\text { False })=0 \\
& \operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)
\end{aligned}
$$

## A Closer Look at Axiom 3

$$
\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)
$$



## Using the Axioms

$$
\begin{array}{clc}
\operatorname{Pr}(A \vee \neg A) & =\operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(A \wedge \neg A) \\
\operatorname{Pr}(\text { True }) & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(\text { False }) \\
1 & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-0 \\
\operatorname{Pr}(\neg A) & = & 1-\operatorname{Pr}(A)
\end{array}
$$

## Bayes Formula

$$
\begin{aligned}
P(x, y) & =P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \Longrightarrow
\end{aligned}
$$

## $P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}$

## Normalization

$$
\begin{aligned}
P(x \mid y) & =\frac{P(y \mid x) P(x)}{P(y)}=\eta P(y \mid x) P(x) \\
\eta & =P(y)^{-1}=\frac{1}{\sum_{x} P(y \mid x) P(x)}
\end{aligned}
$$

Algorithm:

$$
\begin{aligned}
& \forall x: \operatorname{aux}_{x \mid y}=P(y \mid x) P(x) \\
& \eta=\frac{1}{\sum_{x} \operatorname{aux}_{x \mid y}} \\
& \forall x: P(x \mid y)=\eta \text { aux }_{x \mid y}
\end{aligned}
$$

## Conditioning

- Law of total probability:

$$
\begin{aligned}
P(x) & =\int P(x, z) d z \\
P(x) & =\int P(x \mid z) P(z) d z \\
P(x \mid y) & =\int P(x \mid y, z) P(z \mid y) d z
\end{aligned}
$$

# Bayes Rule with Background Knowledge 

$$
P(x \mid y, z)=\frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}
$$

## Conditioning

- Total probability:

$$
\begin{aligned}
P(x) & =\int P(x, z) d z \\
P(x) & =\int P(x \mid z) P(z) d z \\
P(x \mid y) & =\int P(x \mid y, z) P(z) d z
\end{aligned}
$$

## Conditional Independence

$$
P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

equivalent to

$$
P(x \mid z)=P(x \mid z, y)
$$

and

$$
P(y \mid z)=P(y \mid z, x)
$$

## Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P$ (open/z)?



## Causal vs. Diagnostic Reasoning

- $P($ open $/ z)$ is diagnostic. count frequencies!
- P(z/open) is causal.
- Often causal knowledge is easier tø obtain.
- Bayes rule allows us to use causal knowledge:

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

## Example

- $P(z \mid$ open $)=0.6 \quad P(z \mid \neg$ open $)=0.3$
- $P($ open $)=P(\neg$ open $)=0.5$

$$
\begin{aligned}
& P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) p(\text { open })+P(z \mid \neg \text { open }) p(\neg \text { open })} \\
& P(\text { open } \mid z)=\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{2}{3}=0.67
\end{aligned}
$$

- $z$ raises the probability that the door is open.


## Combining Evidence

- Suppose our robot obtains another observation $z_{2}$.
- How can we integrate this new information?
- More generally, how can we estimate $P\left(x \mid z_{1} \ldots z_{n}\right)$ ?


## Recursive Bayesian Updating

$$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$

Markov assumption: $z_{n}$ is independent of $z_{1}, \ldots, z_{n-1}$ if we know $x$.

$$
\begin{aligned}
P\left(x \mid z_{1}, \ldots, z_{n}\right) & =\frac{P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\
& =\eta P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right) \\
& =\eta_{1 \ldots n} \prod_{i=1 . . . n} P\left(z_{i} \mid x\right) P(x)
\end{aligned}
$$

## Example: Second Measurement

- $P\left(z_{2} \mid\right.$ open $)=0.5 \quad P\left(z_{2} \mid \neg\right.$ open $)=0.6$
- $P\left(\right.$ open $\left.\mid z_{1}\right)=2 / 3$

$$
\begin{aligned}
P\left(\text { open } \mid z_{2}, z_{1}\right) & =\frac{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)}{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)+P\left(z_{2} \mid \neg \text { open }\right) P\left(\neg \text { open } \mid z_{1}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}+\frac{3}{5} \cdot \frac{1}{3}}=\frac{5}{8}=0.625
\end{aligned}
$$

- $z_{2}$ lowers the probability that the door is open.


## A Typical Pitfall

- Two possible locations $x_{1}$ and $x_{2}$
- $\mathrm{P}\left(\mathrm{x}_{1}\right)=0.99$
- $\mathrm{P}\left(\mathrm{z} \mid x_{2}\right)=0.09 \mathrm{P}\left(\mathrm{z} \mid x_{1}\right)=0.07$



## Actions

- Often the world is dynamic since
- actions carried out by the robot,
- actions carried out by other agents,
- or just the time passing by change the world.
- How can we incorporate such actions?


## Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...
- Actions are never carried out with absolute certainty.
- In contrast to measurements, actions generally increase the uncertainty.


## Modeling Actions

- To incorporate the outcome of an action $u$ into the current "belief", we use the conditional pdf

$$
P\left(x \mid u, x^{\prime}\right)
$$

- This term specifies the pdf that executing $u$ changes the state from $x^{\prime}$ to $x$.

Example: Closing the door


## State Transitions

$P\left(x \mid u, x^{\prime}\right)$ for $u=$ "close door":


If the door is open, the action "close door" succeeds in $90 \%$ of all cases.

## Integrating the Outcome of Actions

Continuous case:
$P(x \mid u)=\int P\left(x \mid u, x^{\prime}\right) P\left(x^{\prime}\right) d x^{\prime}$

Discrete case:

$$
P(x \mid u)=\sum P\left(x \mid u, x^{\prime}\right) P\left(x^{\prime}\right)
$$

## Example: The Resulting Belief

$$
\begin{aligned}
P(\text { closed } \mid u)= & \sum P\left(\text { closed } \mid u, x^{\prime}\right) P\left(x^{\prime}\right) \\
= & P(\text { closed } \mid u, \text { open }) P(\text { open }) \\
& +P(\text { closed } \mid u, \text { closed }) P(\text { closed }) \\
= & \frac{9}{10} * \frac{5}{8}+\frac{1}{1} * \frac{3}{8}=\frac{15}{16} \\
P(\text { open } \mid u)= & \sum P\left(\text { open } \mid u, x^{\prime}\right) P\left(x^{\prime}\right) \\
= & P(\text { open } \mid u, \text { open }) P(\text { open }) \\
& +P(\text { open } \mid u, \text { closed }) P(\text { closed }) \\
= & \frac{1}{10} * \frac{5}{8}+\frac{0}{1} * \frac{3}{8}=\frac{1}{16} \\
= & 1-P(\text { closed } \mid u)
\end{aligned}
$$

## Bayes Filters: Framework

- Given:
- Stream of observations $z$ and action data $u$ :

$$
d_{t}=\left\{u_{1}, z_{1} \ldots, u_{t}, z_{t}\right\}
$$

- Sensor model $P(z \mid x)$.
- Action model $P\left(x \mid u, x^{\prime}\right)$.
- Prior probability of the system state $P(x)$.
- Wanted:
- Estimate of the state $X$ of a dynamical system.
- The posterior of the state is also called Belief:

$$
\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1} \ldots, u_{t}, z_{t}\right)
$$

## Markov Assumption



Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors


## Bayes Filters

$$
\operatorname{Bel}\left(x_{t}\right)=P\left(x_{t} \mid u_{1}, z_{1} \ldots, u_{t}, z_{t}\right)
$$

$$
\text { Bayes } \quad=\eta P\left(z_{t} \mid x_{t}, u_{1}, z_{1}, \ldots, u_{t}\right) P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}\right)
$$

$$
\text { Markov } \quad=\eta P\left(z_{t} \mid x_{t}\right) P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}\right)
$$

$$
\text { Total prob. }=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{1}, z_{1}, \ldots, u_{t}, x_{t-1}\right)
$$

$$
P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, u_{t}\right) d x_{t-1}
$$

$$
\text { Markov } \quad=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, u_{t}\right) d x_{t-1}
$$

Markov

$$
=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) P\left(x_{t-1} \mid u_{1}, z_{1}, \ldots, z_{t-1}\right) d x_{t-1}
$$

$=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}$

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

1. Algorithm Bayes_filter $\operatorname{Bel}(x), d)$ :
2. $\eta=0$
3. If $d$ is a perceptual data item $z$ then
4. For all $x$ do
5. 

$$
\begin{aligned}
& \operatorname{Bel}^{\prime}(x)=P(z \mid x) \operatorname{Bel}(x) \\
& \eta=\eta+\operatorname{Bel}^{\prime}(x)
\end{aligned}
$$

7. For all $x$ do
8. 

$$
B e l^{\prime}(x)=\eta^{-1} B e l^{\prime}(x)
$$

9. Else if $d$ is an action data item $u$ then
10. For all $x$ do
11. 

$$
\operatorname{Bel}^{\prime}(x)=\int P\left(x \mid u, x^{\prime}\right) \operatorname{Bel}\left(x^{\prime}\right) d x^{\prime}
$$

12. Return Bel' $(x)$

## Bayes Filters as a Family of Algorithms

$$
\operatorname{Bel}\left(x_{t}\right)=\eta P\left(z_{t} \mid x_{t}\right) \int P\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1}
$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Discrete filter： Piecewise Constant case


5

$4 \mathrm{P}(\mathrm{ol} \mid \mathrm{s})$
$4 \mathrm{BE}(\mathrm{s})$


Bels）

$4 \mathrm{P}(\mathrm{o} \mid \mathrm{s})$


号号号号号号 뮘
䠉

## Discrete Bayes Filter Algorithm

1. Algorithm Discrete_Bayes_filter( $\operatorname{Bel}(x), d)$ :
2. $\eta=0$
3. If $d$ is a perceptual data item $z$ then
4. For all $x$ do
5. 

$$
\begin{aligned}
& \operatorname{Bel}^{\prime}(x)=P(z \mid x) \operatorname{Bel}(x) \\
& \eta=\eta+\operatorname{Bel}^{\prime}(x)
\end{aligned}
$$

7. 
8. 

$$
B e l^{\prime}(x)=\eta^{-1} B e l^{\prime}(x)
$$

9. Else if $d$ is an action data item $u$ then
10. For all $x$ do
11. 

$$
\operatorname{Bel}^{\prime}(x)=\sum_{x^{\prime}} P\left(x \mid u, x^{\prime}\right) \operatorname{Bel}\left(x^{\prime}\right)
$$

12. Return Bel' $(x)$

## Piecewise Constant Representation



Example: Grid-based Localization


## Tree-based Representation

Idea: Represent density using a variant of octrees


## Tree-based Representations

- Efficient in space and time
- Multi-resolution



## Exploration with Mobile Robots

## Example Application: Sampling Spatiotemporal Fields



## Questions for Ocean Sampling Example

- How to represent the objective that the goal of motion planning is to acquire information which is then used in model learning?
- Concretely, how to decide where and when to sample on the basis of this?


## Exploration Problems

- Exploration: control a mobile robot so as to maximize knowledge about the external world
- Example: robot needs to acquire a map of a static environment. If we represent map as "occupancy grid", exploration is to maximise cumulative information we have about each grid cell
- POMDPs already subsume this function but we need to define an appropriate payoff function
- One good choice is information gain:

Reduction in entropy of a robot's belief as a function of its actions

## Exploration Heuristics

- While Partially Observable versions of MDPs (i.e., POMDPs) are conceptually useful here, we may not want to use them directly - state/observation space is huge
- We will instead try to derive greedy heuristic based on the notion of information gain.
- Limit lookahead to just one exploration action
- The exploration action could itself involve a sequence of control actions (but logically, it will serve as one exploration action)
- For instance, select a location to explore anywhere in the map, then go there


## Information and Entropy

- The key to exploration is information.
- Entropy of expected information:

$$
H_{p}(x)=-\int p(x) \log p(x) d x \quad \text { or } \quad-\sum_{x} p(x) \log p(x)
$$

- Entropy is at its maximum for a uniform distribution, $p$
- Conditional entropy is the entropy of a conditional distrib.
- In exploration, we seek to minimize the expected entropy of the belief after executing an action
- So, condition on measurement $z$ and control $u$ that define the belief state transition


## Conditional Entropy after Action/Observation

- With $B(b, z, u)$ denoting the belief after executing control $u$ and observing $z$ under belief $b$,
- Conditional entropy of state $x$ ' after executing action $u$ and measuring $z$ is given by,

$$
H_{b}\left(x^{\prime} \mid z, u\right)=-\int B(b, z, u)\left(x^{\prime}\right) \log B(b, z, u)\left(x^{\prime}\right) d x^{\prime}
$$

- The conditional entropy of the control is,

$$
\begin{array}{r}
H_{b}\left(x^{\prime} \mid u\right)=E_{z}\left[H_{b}\left(x^{\prime} \mid z, u\right)\right] \\
=\iint H_{b}\left(x^{\prime} \mid z, u\right) p\left(z \mid x^{\prime}\right) p\left(x^{\prime} \mid u, x\right) b(x) d z d x^{\prime} d x
\end{array}
$$

## Greedy Techniques

- Expected information gain lets us phrase exploration as a decision theoretic problem.
- Information Gain is

$$
\begin{aligned}
I_{b}(u) & =H_{p}(x)-H_{b}\left(x^{\prime} \mid u\right) \\
& =H_{p}(x)-E_{z}\left[H_{b}\left(x^{\prime} \mid z, u\right)\right]
\end{aligned}
$$

## Greedy Techniques

- If $r(x, u)$ is the cost of applying control $u$ in state $x$ (treating cost as negative numbers), then optimal greedy exploration for the belief $b$ maximizes difference between information gain and cost,

$$
\begin{aligned}
\pi(b)= & \arg \max _{u} \alpha\left(\underline{\left.H_{p}(x)-E_{z}\left[H_{b}\left(x^{\prime} \mid z, u\right)\right]\right)}+\right. \\
& \begin{array}{l}
\text { Expected information gain } \\
\\
\\
\text { (Original entropy - Cond. Entropy) }
\end{array} \quad \text { Expected cost }
\end{aligned}
$$

## Example: Combining Exploration and Mapping

- By reasoning about control, the mapping process can be made much more effective
- Question: Where to move next in a map?



## Exploration Problem: Visually


high pose uncertainty



## Map Entropy



The overall entropy is the sum of the individual entropy values

