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Probabilistic Robotics

Key idea:
Explicit representation of uncertainty using the calculus
of probability theory

Perception = state estimation
Action = utility optimization
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Axioms of Probability Theory

Pr(A) denotes probability that proposition A is true.

* 0=Pr(4) =l
*  Pr(True) =1 Pr(False) =0

*  Pr(Av B)=Pr(A)+Pr(B)-Pr(A4 A B)
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A Closer Look at Axiom 3

Pr(Av B) =Pr(A4)+Pr(B)-Pr(A A B)
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Using the Axioms

Pr(Av =A) = Pr(A4)+Pr(—=A)-Pr(AA —A)
Pr(7rue) = Pr(A)+Pr(—=A)-Pr(False)
1 = Pr(A)+ Pr(=A4)-0
Pr(—A) = 1—Pr(A)
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Bayes Formula

P(x,y)=P(x| y)P(y)=P(y|x)P(x)

=

P(y|x) P(x) likelihood-prior

P(x|y)=
( ‘y) P(y) evidence




Normalization

P(x| y) = 2V JDJE); &) _ oy Py | x) P(x)
-1 1
1= ST PG
Algorithm:

Vx:aux,, = P(y|x) P(x)

1

"7 Saux,,

X

Vx:P(x|y)=naux,,
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Conditioning

* Law of total probability:
P(x) = f P(x,z)dz

P(x) =fP(x | 2)P(z2)dz

P(x|y) = [P(x|y,2) P(z| y) dz
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Bayes Rule
with Background Knowledge

P(y|x,z) P(x|z)

P =0 5
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Conditioning

* Total probability:

P(x) =fP(x, z)dz
P(x) =fP(x | 2)P(z2)dz

P(x ‘ ) =fP(x | y,z)P(z) dz
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Conditional Independence
P(x,y|z)=P(x| z)P(y| z)

equivalent to
P(x|z)=P(x|z,y)

and
P(y|z)=P(y|z,x)
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Simple Example of State Estimation

* Suppose a robot obtains measurement z
 What is P(open|/z)?

-
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Causal vs. Diagnhostic Reasoning

° P(open /Z)W count frequencies!

* P(z[open)is causal.

e Often causal knowledge is easier tg obtain.

* Bayes rule allows us to use causdl knowledge:

P(z|open)P(open)
P(z)

P(open | z) =
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Example

* P(zlopen) = 0.6 P(z|-open) = 0.3
* P(open) = P(-open) = 0.5

P(z|open)P(open)

P(open |z) =
(open | 2) P(z|open)p(open)+ P(z| ~open) p(—~open)
0.6:0.5 2

P(open|z) = =—=0.67
(Open | 2) = 60570305 3

« Z raises the probability that the door is open.



Combining Evidence

e Suppose our robot obtains another
observation z,.

* How can we integrate this new information?

* More generally, how can we estimate
P(x|z;...z,)?



Recursive Bayesian Updating

P(zn|x,z1,...,20-1) P(x| 21,...,20 -1)
P(Zn|Zl,...,Zn—l)

P(X|Zl,...,Zn) =

Markov assumption: z, is independent of z,,...,z,_, if we know
X.

P(Zn|X) P(X|Zl,...,Zn—l)
P(Zn|Zl,...,Zn—1)

=1 P(zn|x) P(x|z1,...,2n-1)
=1, | | P(zi]x) P(x)

P(X|Zl,...,Zn) =
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Example: Second Measurement

* P(z,|lopen) = 0.5 P(z,|—open) = 0.6
* P(open|z;)=2/3

P(z, | open) P(open | z))

P(open|z,,z)) =
(open| z;,2,) P(z, |open) P(open|z,)+ P(z, | —open) P(-open | z,)

12
_ 2

= — = 0.625
8

W | N po |

3
12 31
. +_o_
2353

» Z, lowers the probability that the door is open.
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A Typical Pitfall

* Two possible locations x, and x,
* P(x,)=0.99
* P(z|x,)=0.09 P(z|x,)=0.07
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Actions

e Often the world is dynamic since
— actions carried out by the robot,
— actions carried out by other agents,
— or just the time passing by

change the world.

* How can we incorporate such actions?
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Typical Actions

 The robot turns its wheels to move
* The robot uses its manipulator to grasp an object

* Plants grow over time...

e Actions are never carried out with absolute
certainty.

* In contrast to measurements, actions generally
increase the uncertainty.

1/3/2019
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Modeling Actions

* To incorporate the outcome of an action u
into the current “belief”, we use the
conditional pdf

P(x[u,x")

* This term specifies the pdf that executing u
changes the state from x to x.
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Example: Closing the door

-
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State Transitions

P(x[u,x’) for u = “close door:

(09
0.1 fopQ closed 1
0 ]

If the door is open, the action “close door”
succeeds in 90% of all cases.



Integrating the Outcome of Actions

Continuous case:

P(xlu)= f P(xlu,x")P(x")dx

Discrete case:

P(xlu)= EP(x lu, x"YP(x")
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Example: The Resulting Belief

P(closed |u) = EP(closed |u, x")P(x')
= P(closed |u,open)P(open)
+ P(closed |u,closed)P(closed)
9 5 1 3 15

= % =

10 8 1 8 16
P(open|u) = E P(open |u,x")P(x'")
= P(open | u,open)P(open)

+ P(open | u,closed)P(closed)
1 5 0 3 1

= % % =
10 8 1 8 16
=1- P(closed | u)
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Bayes Filters: Framework

* Given:
— Stream of observations z and action data u:
d ={u,z ...,u,z,
— Sensor model P(z[x).
— Action model P(x[u,x’).
— Prior probability of the system state P(x).

e Wanted:

— Estimate of the state X of a dynamical system.
— The posterior of the state is also called Belief:

Bel(x,)=P(x, |u,,z, ...,u,,z,

1/3/2019
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Markov Assumption

d oy

p(Zt |x0:t’Z1:t’u1:t) = p(Zt |Xt)
p(x, 1 x,,2.,,u,) = p(x, | x,_,u)

Underlying Assumptions

e Static world

* Independent noise

* Perfect model, no approximation errors
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Z = observation

Bayes Filters ¢ Zeite.
Bel(x,)=P(x, |u,,z, ...,u,z,)

Bayes =n P(z, | x,,u,z,...u) P(x, |u,z,...,u)
Markov =1 P(z,|x) P(x, |u,z,...,u,)
Totalprob. =1 P(z, | x,) f P(x, |u,z,...,u,x,_)

P(x,_ |u,z,...,u)dx,_,
Markov =n P(z | x) f P(x, |u,x,_) P(x_ |u,z,...,u)dx_
Markov =nP(z, |x,) f P(x |u,x,_)P(x_ |u,z,....z,_,) dx,_,

= 77 P(Zt | xt)_fP(xl‘ | ut”xt—l) Bel(xt—l) dxl‘—l

1/3/2019
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Bel(xt) — 77 P(Zt | )Ct)fp(xt | utaxt_l) Bel(xt—l) dxt—l

1. Algorithm Bayes_filter( Bel(x),d ):

2. n=0

3. If d is a perceptual data item z then
4. For all x do

5. Bel'(x) = P(z | x)Bel(x)
6. 1 =1+ Bel'(x)

7. For all x do

8. Bel'(x) =1~ Bel'(x)

9. Else if d is an action data item u then
10. For all x do

11. Bel'(x) =fP(x |u,x") Bel(x') dx'
12.  Return Bel’(x)




Bayes Filters as a Family of Algorithms

Bel(x)=n P(z |x) (P(x |u,x_ ) Bel(x,) dx,
4 4 4 t t t-1 t-1 t-1

e Kalman filters

* Particle filters

* Hidden Markov models
 Dynamic Bayesian networks

* Partially Observable Markov Decision Processes
(POMDPs)

1/3/2019
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Discrete filter:
Piecewise
Constant case
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Discrete Bayes Filter Algorithm

1 Algorithm Discrete_Bayes_filter( Bel(x),d ):
2 n=0

3 If d is a perceptual data item z then
4. For all x do

5. Bel'(x) = P(z | x)Bel(x)
6 1 =1+ Bel'(x)

7 For all x do

8 Bel'(x) =1~ Bel'(x)

9 Else if d is an action data item u then

10. For all x do

11. Bel'(x) = EP(X | u, x") Bel(x'")
12.  Return Bel’(x) *

1/3/2019
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Piecewise Constant Representation

(0,0,0)
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Example: Grid-based Localization
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Tree-based Representation

Idea: Represent density using a variant of octrees

J -

1/3/2019
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Tree-based Representations

Efficient in space and time
Multi-resolution

[

NENVRER
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Exploration with Mobile Robots
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Example Application: Sampling
Spatiotemporal Fields

Monterey Bay, CA, Aug 5-20, 2003

Satellite Sea Surface Temperature (SST),
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Questions for Ocean Sampling Example

* How to represent the objective that the goal of motion
planning is to acquire information which is then used in
model learning?

* Concretely, how to decide where and when to sample on the
basis of this?
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Exploration Problems

Exploration: control a mobile robot so as to maximize
knowledge about the external world

Example: robot needs to acquire a map of a static

environment. If we represent map as “occupancy grid”,
exploration is to maximise cumulative information we have

about each grid cell

POMDPs already subsume this function but we need to define
an appropriate payoff function

One good choice is information gain:

Reduction in entropy of a robot’s belief as a function of its
actions



Exploration Heuristics

While Partially Observable versions of MDPs (i.e., POMDPs)
are conceptually useful here, we may not want to use them
directly — state/observation space is huge

We will instead try to derive greedy heuristic based on the
notion of information gain.

Limit lookahead to just one exploration action

— The exploration action could itself involve a sequence of
control actions (but logically, it will serve as one
exploration action)

— For instance, select a location to explore anywhere in the
map, then go there



Information and Entropy

The key to exploration is information.
Entropy of expected information:

Hp('x) — _/p(iC) lng(ZU)dZE or —Zp ) log p(x

Entropy is at its maximum for a uniform distrlbutlon,p
Conditional entropy is the entropy of a conditional distrib.

In exploration, we seek to minimize the expected entropy of
the belief after executing an action

So, condition on measurement z and control u that define the
belief state transition



Conditional Entropy after Action/Observation

* With B(b,z,u) denoting the belief after executing control # and
observing z under belief b,

* Conditional entropy of state x " after executing action u and
measuring z is given by,

Hy(2'|z,u) = —/B(b,z,u)(a:’) log B(b, z, u)(x")dx’

* The conditional entropy of the control is,

Hy(2'|u) = E;[Hy (2|2, u)]
//Hb Iz, w)p(z|z"p(z' |u, 2)b(x)dzdx’dx
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Greedy Techniques

* Expected information gain lets us phrase exploration as a
decision theoretic problem.

* |Information Gainis

Iy(u) = Hp(z) — Hp(2'|u)
= Hp(z) — E.[Hy(2'[2, )]
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Greedy Techniques

If 7(x,u) is the cost of applying control u in state x (treating
cost as negative numbers), then optimal greedy exploration
for the belief 5 maximizes difference between information

gain and cost,

w(b) = arg max a(Hy(x) — E,[Hy(z'|z,u)]) + /r(w, u)b(x)dx

Expected information gain c
(Original entropy — Cond. Entropy) xpected cost



Example: Combining Exploration and
Mapping

* By reasoning about control, the mapping process can be
made much more effective

 Question: Where to move next in a map?

1/3/2019
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Exploration Problem: Visually

expected utility

high pose uncertainty
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Map Entropy

Low entropy

occupied free
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The overall entropy is the sum of the individual entropy values
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