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Probabilis+c	Robo+cs	

Key	idea:		
Explicit	representa+on	of	uncertainty	using	the	calculus	
of	probability	theory	

Percep+on 	=	state	es+ma+on	
Ac+on	 	=	u+lity	op+miza+on	
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Pr(A)	denotes	probability	that	proposi+on	A	is	true.	

•  		
	

•  	
		

•  		

Axioms	of	Probability	Theory	

1)Pr(0 ≤≤ A

1)Pr( =True

)Pr()Pr()Pr()Pr( BABABA ∧−+=∨

0)Pr( =False
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A	Closer	Look	at	Axiom	3	

B 

BA∧A B
True

)Pr()Pr()Pr()Pr( BABABA ∧−+=∨
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Using	the	Axioms	
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Bayes	Formula	

evidence
prior likelihood
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Normaliza+on	
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Condi+oning	

•  Law	of	total	probability:	
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Bayes	Rule		
with	Background	Knowledge	
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Condi+oning	

•  Total	probability:	
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Condi+onal	Independence	

)|()|(),( zyPzxPzyxP =

),|()( yzxPzxP =

),|()( xzyPzyP =

	

	equivalent	to	
				
		and	
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Simple	Example	of	State	Es+ma+on	

•  Suppose	a	robot	obtains	measurement	z	
•  What	is	P(open|z)?	
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Causal	vs.	Diagnos+c	Reasoning	

•  P(open|z)	is	diagnos+c.	
•  P(z|open)	is	causal.	
•  O[en	causal	knowledge	is	easier	to	obtain.	
•  Bayes	rule	allows	us	to	use	causal	knowledge:	

)(
)()|()|( zP

openPopenzPzopenP =

count frequencies! 
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Example	
•  P(z|open) = 0.6   P(z|¬open) = 0.3 
•  P(open) = P(¬open) = 0.5 
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•  z raises the probability that the door is open. 
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Combining	Evidence	

•  Suppose	our	robot	obtains	another	
observa+on	z2.	

•  How	can	we	integrate	this	new	informa+on?	

•  More	generally,	how	can	we	es+mate	
P(x| z1...zn )?	
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Recursive	Bayesian	Upda+ng	
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Example:	Second	Measurement		

•  P(z2|open) = 0.5  P(z2|¬open) = 0.6 
•  P(open|z1)=2/3 
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•  z2 lowers the probability that the door is open. 
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A	Typical	Pi`all	

•  Two	possible	loca+ons	x1	and	x2	
•  P(x1)=0.99		
•  P(z|x2)=0.09	P(z|x1)=0.07		
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Ac+ons	

•  O[en	the	world	is	dynamic	since	
– ac1ons	carried	out	by	the	robot,	
– ac1ons	carried	out	by	other	agents,	
– or	just	the	1me	passing	by	

	change	the	world.	
	
•  How	can	we	incorporate	such	ac1ons?	
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Typical	Ac+ons	

•  The	robot	turns	its	wheels	to	move	
•  The	robot	uses	its	manipulator	to	grasp	an	object	
•  Plants	grow	over	1me…	

•  Ac+ons	are	never	carried	out	with	absolute	
certainty.	

•  In	contrast	to	measurements,	ac1ons	generally	
increase	the	uncertainty.		
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Modeling	Ac+ons	

•  To	incorporate	the	outcome	of	an	ac+on	u	
into	the	current	“belief”,	we	use	the	
condi+onal	pdf		

P(x|u,x’)	
	

•  This	term	specifies	the	pdf	that	execu1ng	u	
changes	the	state	from	x’	to	x.	
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Example:	Closing	the	door	
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State	Transi+ons	

P(x|u,x’)	for	u	=	“close	door”:	
	
	
	
	
	
	
If	the	door	is	open,	the	ac+on	“close	door”	
succeeds	in	90%	of	all	cases.	

open closed0.1 1
0.9

0
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Integra+ng	the	Outcome	of	Ac+ons	

P(x | u) = P(x | u, x ')P(x ')dx '∫

P(x | u) = P(x | u, x ')P(x ')∑

Continuous case: 
 
 
 
 
 
 
 
 
Discrete case: 
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Example:	The	Resul+ng	Belief	
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Bayes	Filters:	Framework	
•  Given:	

–  Stream	of	observa+ons	z	and	ac+on	data	u:	

–  Sensor	model	P(z|x).	
–  Ac+on	model	P(x|u,x’).	
–  Prior	probability	of	the	system	state	P(x).	

•  Wanted:		
–  Es+mate	of	the	state	X	of	a	dynamical	system.	
–  The	posterior	of	the	state	is	also	called	Belief:	

),,,|()( 11 tttt zuzuxPxBel …=

},,,{ 11 ttt zuzud …=
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Markov	Assump+on	

Underlying	Assump+ons	
•  Sta+c	world	
•  Independent	noise	
•  Perfect	model,	no	approxima+on	errors	

p(xt | x1:t−1, z1:t,u1:t ) = p(xt | xt−1,ut )
p(zt | x0:t, z1:t,u1:t ) = p(zt | xt )
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111 )(),|()|( −−−∫= ttttttt dxxBelxuxPxzPη

Bayes	Filters	
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Bayes	Filter	Algorithm		
1.  	Algorithm	Bayes_filter(	Bel(x),d	):	
2.  	η=0

3.  	If	d	is	a	perceptual	data	item	z	then	
4.  					For	all	x	do	
5.  		
6.  		
7.  					For	all	x	do	
8.  		

9.  	Else	if	d	is	an	ac+on	data	item	u	then	
10.  					For	all	x	do	
11.  		

12.  	Return	Bel’(x)							

)()|()(' xBelxzPxBel =
)(' xBel+=ηη

)(')(' 1 xBelxBel −=η

')'()',|()(' dxxBelxuxPxBel ∫=

111 )(),|()|()( −−−∫= tttttttt dxxBelxuxPxzPxBel η
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Bayes	Filters	as	a	Family	of	Algorithms	

•  Kalman	filters	
•  Par+cle	filters	
•  Hidden	Markov	models	
•  Dynamic	Bayesian	networks	
•  Par+ally	Observable	Markov	Decision	Processes	
(POMDPs)	

111 )(),|()|()( −−−∫= tttttttt dxxBelxuxPxzPxBel η
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Discrete	filter:	
Piecewise		

Constant	case	
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Discrete	Bayes	Filter	Algorithm		

1.  	Algorithm	Discrete_Bayes_filter(	Bel(x),d	):	
2.  	η=0

3.  	If	d	is	a	perceptual	data	item	z	then	
4.  					For	all	x	do	
5.  		
6.  		
7.  					For	all	x	do	
8.  		

9.  	Else	if	d	is	an	ac+on	data	item	u	then	
10.  					For	all	x	do	
11.  		

12.  	Return	Bel’(x)							

)()|()(' xBelxzPxBel =
)(' xBel+=ηη

)(')(' 1 xBelxBel −=η

∑=
'

)'()',|()('
x

xBelxuxPxBel
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Piecewise	Constant	Representa+on	

),,( >=< θyxxBel t
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Example:	Grid-based	Localiza+on	
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Tree-based	Representa+on	

Idea: Represent density using a variant of octrees 
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Tree-based	Representa+ons	

•  Efficient in space and time 
•  Multi-resolution 
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Explora+on	with	Mobile	Robots	
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Example	Applica+on:	Sampling	
Spa+otemporal	Fields	
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Ques+ons	for	Ocean	Sampling	Example	

•  How	to	represent	the	objec+ve	that	the	goal	of	mo+on	
planning	is	to	acquire	informa+on	which	is	then	used	in	
model	learning?	

•  Concretely,	how	to	decide	where	and	when	to	sample	on	the	
basis	of	this?	
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Explora+on	Problems	

•  Explora+on:	control	a	mobile	robot	so	as	to	maximize	
knowledge	about	the	external	world	

•  Example:	robot	needs	to	acquire	a	map	of	a	sta+c	
environment.	If	we	represent	map	as	“occupancy	grid”,	
explora+on	is	to	maximise	cumula+ve	informa+on	we	have	
about	each	grid	cell	

•  POMDPs	already	subsume	this	func+on	but	we	need	to	define	
an	appropriate	payoff	funcDon	

•  One	good	choice	is	informa+on	gain:	
Reduc+on	in	entropy	of	a	robot’s	belief	as	a	func+on	of	its	
ac+ons	
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Explora+on	Heuris+cs	

•  While	Par+ally	Observable	versions	of	MDPs	(i.e.,	POMDPs)	
are	conceptually	useful	here,	we	may	not	want	to	use	them	
directly	–	state/observa+on	space	is	huge	

•  We	will	instead	try	to	derive	greedy	heuris+c	based	on	the	
no+on	of	informaDon	gain.	

•  Limit	lookahead	to	just	one	explora+on	ac+on	
–  The	explora+on	ac+on	could	itself	involve	a	sequence	of	
control	ac+ons	(but	logically,	it	will	serve	as	one	
explora+on	ac+on)	

–  For	instance,	select	a	loca+on	to	explore	anywhere	in	the	
map,	then	go	there	
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Informa+on	and	Entropy	

•  The	key	to	explora+on	is	informa+on.	
•  Entropy	of	expected	informa+on:	

•  Entropy	is	at	its	maximum	for	a	uniform	distribu+on,	p 
•  Condi+onal	entropy	is	the	entropy	of	a	condi+onal	distrib.	
•  In	explora+on,	we	seek	to	minimize	the	expected	entropy	of	

the	belief	a[er	execu+ng	an	ac+on	
•  So,	condi+on	on	measurement	z	and	control	u	that	define	the	

belief	state	transi+on	
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Hp(x) = �
Z

p(x) log p(x)dx �
X

x

p(x) log p(x)or 



Condi+onal	Entropy	a[er	Ac+on/Observa+on	

•  With	B(b,z,u)	deno+ng	the	belief	a[er	execu+ng	control	u	and	
observing	z	under	belief	b,		

•  Condi+onal	entropy	of	state	x’	a[er	execu+ng	ac+on	u	and	
measuring	z	is	given	by,	

•  The	condi+onal	entropy	of	the	control	is,	
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Hb(x
0|z, u) = �

Z
B(b, z, u)(x0

) logB(b, z, u)(x0
)dx0

Hb(x
0|u) = Ez[Hb(x

0|z, u)]

=

Z Z
Hb(x

0|z, u)p(z|x0)p(x0|u, x)b(x)dzdx0dx



Greedy	Techniques	

•  Expected	informa+on	gain	lets	us	phrase	explora+on	as	a	
decision	theore+c	problem.	

•  Informa+on	Gain	is	
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Ib(u) = Hp(x)�Hb(x
0|u)

= Hp(x)� Ez[Hb(x
0|z, u)]



Greedy	Techniques	

•  If	r(x,u)	is	the	cost	of	applying	control	u	in	state	x	(trea+ng	
cost	as	nega+ve	numbers),	then	op+mal	greedy	explora+on	
for	the	belief	b	maximizes	difference	between	informa+on	
gain	and	cost,	
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⇡(b) = argmax

u
↵(Hp(x)� Ez[Hb(x

0|z, u)]) +
Z

r(x, u)b(x)dx

Expected information gain 
(Original entropy – Cond. Entropy) Expected cost 



Example:	Combining	Explora+on	and	
Mapping	

•  By	reasoning	about	control,	the	mapping	process	can	be	
made	much	more	effec+ve	

	
•  Ques+on:	Where	to	move	next	in	a	map?	
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Explora+on	Problem:	Visually	
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Map	Entropy	
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