Decision Making
 in Robots and Antonamous Agents

Game Theory: How should robots reason about interactive decisions?

Subramanian Ramamoorthy School of Informatics

15 February, 2019

Robots Often Face Strategic Adversaries

Key issue we seek to model: Misaligned/conflicting interest

On Self-Interest

What does it mean to say that agents are self-interested?

- It does not necessarily mean that they want to cause harm to each other, or even that they care only about themselves.
- Instead, it means that each agent has his own description of which states of the world he likes-which can include good things happening to other agents
-and that he acts in an attempt to bring about these states of the world (better term: inter-dependent decision making)

Basic Constructs of Game (Extensive Form)

- Move: A point of decision for the player, defined by a set of actions that could be chosen (e.g., I am holding King-10-2). In an abstract form:

The move looks identical in a different game involving, say, passing - calling- betting

- Choice: The particular action that has actually been chosen (play King)
- Play: A sequence of choices, one following another, until the game terminates (King -> 10 -> 2)

Abstract Relation Between Moves

Game Trees

- The previous picture is often referred to as a game tree, a listing of moves and consequences
- It is a tree in the mathematical sense
- Strictly speaking, many games should have a game graph (not just a tree)
- Why?
- However, the convention is to treat the play (history of moves) as unique even if it revisits a specific state

Information Sets

- What can each player know when he makes a choice at a move?
- We are not asking about their way of playing - just, what is the most they could possibly know without violating the rules of the game?
- e.g., think of card games with chance moves, or where a player picks a card and places it face down on the table
- Rules of the game specify which moves are indistinguishable
- Two requirements for information set:
- Moves must be assigned to same player
- Moves must have same number of alternatives

Information Sets - Pictorially

Specification of an Extensive Form Game

- A finite tree with a distinguished node
- A partition of the nodes of the tree into $n+1$ sets (specifying who takes the move)
- A probability distribution over the branches of chance moves
- A refinement of the player partition into information sets (characterizes, for each player, the ambiguity of location of the game tree of each of his moves)
- An identification of corresponding branches for each of the moves in each information set
- A set of outcomes and an assignment of outcomes to each endpoint of the tree

How Do Players Actually Choose?

- Each player has a linear utility function M_{i} over outcomes
- Each player is fully aware of the rules, and will maximize expected utility
- Pure strategy: prescription of decision for each situation
- For any fixed strategy, given the rules of the game, the game tree can be evaluated directly to yield a value
- If there are chance moves, selection of strategies of players defines a distribution over plays and the payoff is expected value w.r.t. this distribution

A Different Simple Model of a Game

- Two decision makers
- Robot (has an action space: A)
- Adversary (has an action space: θ)
- Cost or payoff (to use the term common in game theory) depends on actions of both decision makers:
$R(a, \theta)$ - denote as a matrix corresponding to product space

This is the normal form - simultaneous choice over moves

Representing Payoffs

In a general, bi-matrix, normal form game $\left(n, \mathcal{A}_{1 \ldots n}, R_{1 \ldots n}\right)$

$$
\text { Action sets of players } \quad \begin{gathered}
\text { Payoff function: } \\
\mathcal{A} \rightarrow \Re
\end{gathered}
$$

a.k.a.
utility $\boldsymbol{u}_{2}(a)$

The combined actions $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ form an action profile a $\in A$

Example: Rock-Paper-Scissors

- Famous children's game
- Two players; Each player simultaneously picks an action which is evaluated as follows,
- Rock beats Scissors
- Scissors beats Paper
- Paper beats Rock
$R_{1}=\begin{aligned} & \mathrm{R} \\ & \mathrm{P} \\ & \mathrm{S}\end{aligned}\left(\begin{array}{rrr}\mathrm{R} & \mathrm{P} & \mathrm{S} \\ 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right) \quad R_{2}=\begin{aligned} & \mathrm{R} \\ & \mathrm{P} \\ & \mathrm{S}\end{aligned}\left(\begin{array}{rrr}\mathrm{R} & \mathrm{P} & \mathrm{S} \\ 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right)$

TCP Game

- Imagine there are only two internet users: you and me
- Internet traffic is governed by TCP protocol, one feature of which is the backoff mechanism: when network is congested then backoff and reduce transmission rates for a while
- Imagine that there are two implementations: C (correct, does what is intended) and D (defective)
- If you both adopt C, packet delay is 1 ms ; if you both adopt D , packet delay is 3 ms
- If one adopts C but other adopts D then D user gets no delay and C user suffers 4 ms delay

TCP Game in Normal Form

Note that this is another way of writing a bi-matrix game: First number represents payoff of row player and second number is payoff for column player

Some Famous Matrix Examples - What are they Capturing?

- Prisoner's Dilemma: Cooperate or Defect (same as TCP game)

$$
R_{1}=\begin{gathered}
C \\
\mathrm{C} \\
\mathrm{D}
\end{gathered}\left(\begin{array}{ll}
3 & \mathrm{D} \\
4 & 1
\end{array}\right) \quad R_{2}=\begin{gathered}
\mathrm{C} \\
\mathrm{D}
\end{gathered}\left(\begin{array}{cc}
\mathrm{C} & \mathrm{D} \\
3 & 4 \\
0 & 1
\end{array}\right)
$$

- Bach or Stravinsky (von Neumann called it Battle of the Sexes)

$$
R_{1}=\begin{gathered}
\mathrm{B} \\
\mathrm{~B} \\
\mathrm{~S}
\end{gathered}\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \quad R_{2}=\begin{array}{cc}
\mathrm{B} & \mathrm{~S} \\
\mathrm{~B} \\
\mathrm{~S}
\end{array}\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

- Matching Pennies: Try to get the same outcome, Heads/Tails

$$
R_{1}=\begin{gathered}
\mathrm{H} \\
\mathrm{~T} \\
\mathrm{~T}
\end{gathered}\left(\begin{array}{rr}
\mathrm{T} \\
1 & -1 \\
-1 & 1
\end{array}\right) \quad R_{2}=\begin{array}{r}
\mathrm{H} \\
\mathrm{~T}
\end{array}\left(\begin{array}{rc}
-1 & \mathrm{~T} \\
1 & -1
\end{array}\right)
$$

Different Categorization: Common Payoff

A common-payoff game is a game in which for all action profiles $a \in A_{1} \times \cdots \times A_{n}$ and any pair of agents i, j, it is the case that $u_{i}(a)=u_{j}(a)$

Left Right

Pure coordination:
e.g., driving on a side of the road

Different Categorization: Constant Sum

A two-player normal-form game is constant-sum if there exists a constant c such that for each strategy profile $a \in A_{1} \times$ A_{2} it is the case that $u_{1}(a)+u_{2}(a)=c$

Pure competition:
One player wants to coordinate Other player does not!

What Can Players Do?

What can players do?

- Pure strategies $\left(a_{i}\right)$: select an action.
- Mixed strategies $\left(\sigma_{i}\right)$: select an action according to some probability distribution.

Strategies

Notation.

- σ is a joint strategy for all players.

$$
R_{i}(\sigma)=\sum_{a \in \mathcal{A}} \sigma(a) R_{i}(a)
$$

- σ_{-i} is a joint strategy for all players except i.
- $\left\langle\sigma_{i}, \sigma_{-i}\right\rangle$ is the joint strategy where i uses strategy σ_{i} and everyone else σ_{-i}.

Solution Concepts

Many ways of describing what one ought to do:

- Dominance
- Minimax
- Pareto Efficiency
- Nash Equilibria
- Correlated Equilibria

Remember that in the end game theory aspires to predict behaviour given specification of the game.

Normatively, a solution concept is a rationale for behaviour

Concept: Dominance

- An action is strictly dominated if another action is always better, i.e,

$$
\exists a_{i}^{\prime} \in \mathcal{A}_{i} \forall a_{-i} \in \mathcal{A}_{-i} \quad R_{i}\left(\left\langle a_{i}^{\prime}, a_{-i}\right\rangle\right)>R_{i}\left(\left\langle a_{i}, a_{-i}\right\rangle\right)
$$

- Consider prisoner's dilemma.

$$
R_{1}=\begin{array}{cc}
\mathrm{C} & \mathrm{D} \\
\mathrm{C}
\end{array}\left(\begin{array}{ll}
3 & 0 \\
4 & 1
\end{array}\right) \quad R_{2}=\begin{array}{cc}
\mathrm{C} & \mathrm{D} \\
\mathrm{C} \\
\mathrm{D}
\end{array}\left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)
$$

- For both players, D dominates C.

Concept: Iterated Dominance

- Actions may be dominated by mixed strategies.

$$
R_{1}=\begin{array}{cc}
\mathrm{A} \\
\mathrm{~A} \\
\mathrm{~B} \\
\mathrm{C}
\end{array}\left(\begin{array}{ll}
1 & 1 \\
4 & 0 \\
0 & 4
\end{array}\right) \quad R_{2}=\begin{array}{cc}
\mathrm{A} \\
\mathrm{~B} \\
\mathrm{C}
\end{array}\left(\begin{array}{cc}
\mathrm{D} & \mathrm{E} \\
1 & 2 \\
0 & 1
\end{array}\right)
$$

- If strictly dominated actions should not be played. . .

- This game is said to be dominance solvable.

Concept: Minimax

- Consider matching pennies.

$$
R_{1}=\stackrel{H}{\mathrm{H}}\left(\begin{array}{rr}
\mathrm{H} & \mathrm{~T} \\
1 & -1 \\
-1 & 1
\end{array}\right) \quad R_{2}=\stackrel{H}{\mathrm{H}}\left(\begin{array}{rr}
\mathrm{H} & \mathrm{~T} \\
-1 & 1 \\
1 & -1
\end{array}\right)
$$

- Q: What do we do when the world is out to get us? A: Make sure it can'†.
- Play strategy with the best worst-case outcome.

$$
\underset{\sigma_{i} \in \Delta\left(\mathcal{A}_{i}\right)}{\operatorname{argmax}} \min _{a-i \in \mathcal{A}_{-i}} R_{i}\left(\left\langle\sigma_{i}, \sigma_{-i}\right\rangle\right)
$$

- Minimax optimal strategy.

Minimax

- Back to matching pennies.

$$
R_{1}=\stackrel{{ }_{\mathrm{T}}}{\mathrm{H}}\left(\begin{array}{rr}
\mathrm{H} & \mathrm{~T} \\
1 & -1 \\
-1 & 1
\end{array}\right) \quad\binom{1 / 2}{1 / 2}=\sigma_{1}^{*}
$$

- Consider Bach or Stravinsky.

$$
R_{1}=\begin{gathered}
\mathrm{B} \\
\mathrm{~B} \\
\mathrm{~S}
\end{gathered}\left(\begin{array}{c}
\mathrm{S} \\
2
\end{array} 00 . \quad\binom{1 / 3}{0} \quad\left(\begin{array}{c}
\\
2 / 3
\end{array}\right)=\sigma_{1}^{*}\right.
$$

- Minimax optimal guarantees the saftey value.
- Minimax optimal never plays dominated strategies.

Computing Minimax

- Minimax optimal strategies via linear programming.

$$
\underset{\sigma_{i} \in \Delta\left(\mathcal{A}_{i}\right)}{\operatorname{argmax}} \min _{a_{-i} \in \mathcal{A}_{-i}} R_{i}\left(\left\langle\sigma_{i}, \sigma_{-i}\right\rangle\right)
$$

Pick-a-Hand

- There are two players: chooser (player I) \& hider (player II)
- The hider has two gold coins in his back pocket. At the beginning of a turn, he puts his hands behind his back and either takes out one coin and holds it in his left hand, or takes out both and holds them in his right hand.
- The chooser picks a hand and wins any coins the hider has hidden there.
- She may get nothing (if the hand is empty), or she might win one coin, or two.

Pick-a-Hand, Normal Form:

	hider		
		L	R
区id		1	
of	R	0	2

- Hider could minimize losses by placing 1 coin in left hand, most he can lose is 1
- If chooser can figure out hider's plan, he will surely lose that 1
- If hider thinks chooser might strategise, he has incentive to play R2, ...
- All hider can guarantee is max loss of 1 coin
- Similarly, chooser might try to maximise gain, picking R
- However, if hider strategizes, chooser ends up with zero
- So, chooser can't actually guarantee winning anything

Pick-a-Hand, with Mixed Strategies

- Suppose that chooser decides to choose R with probability p and L with probability 1 - p
- If hider were to play pure strategy R2 his expected loss would be $2 p$
- If he were to play L1, expected loss is $1-p$
- Chooser maximizes her gains by choosing p so as to maximize $\min \{2 p, 1-p\}$

- Thus, by choosing R with probability $1 / 3$ and L with probability 2/3, chooser assures expected payoff of 2/3, regardless of whether hider knows her strategy

Mixed Strategy for the Hider

- Hider will play R2 with some probability q and L1 with probability 1-q
- The payoff for chooser is $2 q$ if she picks R, and 1 - q if she picks L
- If she knows q, she will choose the strategy corresponding to the maximum of the two values.
- If hider knows chooser's plan, he will choose $q=1 / 3$ to minimize this maximum, guaranteeing that his expected payout is $2 / 3$ (because $2 / 3=2 q=1-q$)
- Chooser can assure expected gain of $2 / 3$, hider can assure an expected loss of no more than $2 / 3$, regardless of what either knows of the other's strategy.

Safety Value as Incentive

- Clearly, without some extra incentive, it is not in hider's interest to play Pick-a-hand because he can only lose by playing.
- Thus, we can imagine that chooser pays hider to entice him into joining the game.
- $2 / 3$ is the maximum amount that chooser should pay him in order to gain his participation.

Another Game

	player II		
-		L	R
$\stackrel{\square}{0}$	T	0	2
\%	B	5	1

Mixed strategies:

- Suppose player I plays T with probability p and B with probability 1-p
- Player II plays L with probability q and R with probability 1 - q
- For player I, expected payoff is $2(1-q)$ for playing pure strategy T; $4 q+1$ for playing pure strategy B.
- If she knows q, she'll pick the strategy corresponding to $\max \{2(1-q), 4 q+1\}$
- Player II can choose $q=1 / 6$ so as to minimize this maximum, and expected amount player II will pay player I is $5 / 3$.

The Game Analysed Graphically

If pl. I knows q, she'll pick strategy based on $\max \{2(1-q)$, $4 q+1\}$. Player II can choose $q=$ $1 / 6$ so as to minimize this maximum. Expected amount player II will pay player I is $\mathbf{5 / 3}$.

For pl. II, expected loss is 5(1-p) if he plays pure strategy L and $1+\mathrm{p}$ if he plays pure strategy R ; he will aim to minimize this expected payout. In order to maximize this minimum, player I will choose $p=$ $2 / 3$, yielding expected gain 5/3.

Concept: Nash Equilibrium

- What action should we play if there are no dominated actions?
- Optimal action depends on actions of other players.
- A best response set is the set of all strategies that are optimal given the strategies of the other players.

$$
\mathrm{BR}_{i}\left(\sigma_{-i}\right)=\left\{\sigma_{i} \quad \mid \quad \forall \sigma_{i}^{\prime} \quad R_{i}\left(\left\langle\sigma_{i}, \sigma_{-i}\right\rangle\right) \geq R_{i}\left(\left\langle\sigma_{i}^{\prime}, \sigma_{-i}\right\rangle\right)\right\}
$$

- A Nash equilibrium is a joint strategy, where all players are playing best responses to each other.

$$
\forall i \in\{1 \ldots n\} \quad \sigma_{i} \in \mathrm{BR}_{i}\left(\sigma_{-i}\right)
$$

Nash Equilibrium

- A Nash equilibrium is a joint strategy, where all players are playing best responses to each other.

$$
\forall i \in\{1 \ldots n\} \quad \sigma_{i} \in \mathrm{BR}_{i}\left(\sigma_{-i}\right)
$$

- Since each player is playing a best response, no player can gain by unilaterally deviating.
- Dominance solvable games have obvious equilibria.
- Strictly dominated actions are never best responses.
- Prisoner's dilemma has a single Nash equilibrium.

Nash Equilibrium - Example

- Consider the coordination game.

$$
R_{1}=\begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
\mathrm{~A} \\
\mathrm{~B} \\
\left(\begin{array}{|cc}
2 & 0 \\
0 & 1
\end{array}\right)
\end{array} \quad R_{2}=\begin{array}{cc}
\mathrm{A} & \mathrm{~B} \\
\mathrm{~B}
\end{array}\left(\begin{array}{cc}
\boxed{2} & 0 \\
0 & 1
\end{array}\right)
$$

- Consider Bach or Stravinsky.

$$
R_{1}=\begin{array}{cc}
\mathrm{B} & \mathrm{~S} \\
\mathrm{~B} \\
\mathrm{~S} \\
\left(\begin{array}{ll}
2 & 0 \\
\hline 0 & 1 \\
\hline
\end{array}\right)
\end{array} \quad R_{2}=\begin{array}{cc}
\mathrm{B} & \mathrm{~S} \\
\mathrm{~S} \\
\mathrm{~S}
\end{array}\left(\begin{array}{cc}
1 & 0 \\
\hline 0 & 2
\end{array}\right)
$$

Nash Equilibrium - Example

- Consider matching pennies.

$$
R_{1}=\begin{gathered}
\mathrm{H} \\
\mathrm{~T}
\end{gathered}\left(\begin{array}{rr}
\mathrm{T} \\
1 & -1 \\
-1 & 1
\end{array}\right) \quad R_{2}=\begin{gathered}
\mathrm{H} \\
\mathrm{~T}
\end{gathered}\left(\begin{array}{r}
\mathrm{H} \\
-1
\end{array}\right.
$$

- No pure strategy Nash equilibria. Mixed strategies?

$$
\operatorname{BR}_{1}(\langle 1 / 2,1 / 2\rangle)=\left\{\sigma_{1}\right\}
$$

- Corresponds to the minimax strategy.

Influence Diagrams [Howard \& Matheson ‘84]

- Influence Diagrams (ID) extend Bayesian Networks for decision making.
- Rectangles are decisions; ovals are chance variables; diamonds are utility functions.
- Graph topology describes decision problem.
- Each node specifies a probability distribution (CPD) given each
 value of parents.

Multi-agent Influence Diagrams

[Milch and Koller 'or]

- Extend Influence Diagrams to the multi-agent case.
- Rectangles and diamonds represent decisions and utilities associated with agents; ovals represent chance variables.
- A strategy for a decision is a mapping from the informational parents of the decision to a value in its domain.
- A strategy profile includes strategies for all decisions.

Reasoning Patterns through IDs

- Informally, a reasoning pattern is a form of argument that leads to and explains a decision
- e.g.
- modus ponens in logic
- explaining away in Bayes nets
- What reasoning patterns can agents use in interactive decision making contexts?
[A. Pfeffer \& Y. Gal, On the reasoning patterns of agents in games, In Proc. AAAI 2007]

Characterization of Reasoning Patterns

- Four basic reasoning patterns, each characterized by paths in a multiple-agent version of influence diagrams
- Characterization based on graphical criteria only
- could further refine characterization based on numerical parameters

Reasoning Pattern \#1: Direct Effect

- An agent takes a decision because of its direct effect on its utility
- without being mediated by other agents' actions

Reasoning Pattern \#2: Manipulation

- Child knows about parent's action
- Parent does not care about reading, but wants child to brush teeth
- Child dislikes brushing teeth but likes being read to
\Rightarrow Parent can manipulate child

Reasoning Pattern \#3: Signaling

- A communicates something that she knows to B, thus influencing B's behavior

Reasoning Pattern \#4: Revealing/Denying

- Driller cares about oil
- Tester receives fee if driller drills
- Tester causes driller to find out (or not) about information tester herself does not know

Example: Two Stage Principal-Agent Game

Type: described parameters specific to an agent Rep: Quantification of "Reputation"

Direct Effect For All Four Decisions

Manipulation $\left(\mathrm{P}_{1} \rightarrow \mathrm{~A}_{1}\right)$

Manipulation $\left(\mathrm{P}_{2} \rightarrow \mathrm{~A}_{2}\right)$

Signaling (A_{1} signals Type to P_{2})

Signaling (A_{1} signals Type to P_{2})

Signaling (A_{1} signals Type to P_{2})

Signaling (A_{1} signals Type to P_{2})

Signaling (A_{1} signals Type to P_{2})

Revealing/Denying (P_{1} reveals Type to P_{2})

Revealing/Denying (P_{1} reveals Type to P_{2})

References

Some of the examples and related content are from:

- R.D. Luce, H. Raiffa, Games and Decisions, Dover 1985.
- A. Karlin, Y. Peres, Game Theory, Alive, AMS Press 2017.
- Tutorial at IJCAI 2003 by Prof Peter Stone, University of Texas

