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Objec&ves	of	this	Lecture	

•  Introduce	the	dynamic	programming	principle,	a	way	to	solve	
sequen&al	decision	problems	(such	as	path	planning)	

•  Introduce	the	Markov	Decision	Process	model,	and	discuss	
the	nature	of	the	policy	arising	in	a	similar	sequen&al	decision	
problem	with	probabilis&c	transi&ons	
–  Includes	recap	of	the	no&on	of	Markov	Chains	

•  In	the	second	half,	introduce	different	ways	of	posing	decision	
problems	in	terms	of	u&li&es,	mo&va&ng	principles	of	
Bayesian	choices	

8/2/19	 2	



Problem	of	Determining	Paths	
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GeNng	from	“A	to	B”:	Bird’s	Eye	View	
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GeNng	from	“A	to	B”:	Local	View	
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How could we calculate the best path?



Dynamic	Programming	(DP)	Principle	

•  Mathema&cal	technique	oXen	useful	for	making	a	sequence	
of	inter-related	decisions	

•  Systema&c	procedure	for	determining	the	combina&on	of	
decisions	that	maximize	overall	effec&veness	

•  There	may	not	be	a	“standard	form”	of	DP	problems,	instead	
it	is	an	approach	to	problem	solving	and	algorithm	design	

•  We	will	try	to	understand	this	through	a	few	example	models,	
solving	for	the	“op&mal	policy”	(the	no&on	of	which	will	
become	clearer	as	we	go	along)	
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Stagecoach	Problem	

•  Simple	thought	experiment	due	to	H.M.	Wagner	at	Stanford	
•  Consider	a	mythical	American	salesman	from	over	a	hundred	

years	ago.	He	needs	to	travel	west	from	the	east	coast,	
through	unfriendly	country	with	bandits.		

•  He	has	a	well	defined	start	point	and	des&na&on,	but	the	
states	he	visits	en	route	are	up	to	his	own	choice	

•  Let	us	visualize	this,	using	numbered	blocks	for	states		
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Stagecoach	Problem:	Possible	Routes	
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10	

Each box is a state (generically indexed by an integer, i) 
Transitions, i.e., edges, can be annotated with a “cost” 



Stagecoach	Problem:	Setup	

•  The	salesman	needs	to	go	through	four	stages	to	travel	from	
his	point	of	departure	in	state	1	to	des&na&on	in	state	10	

•  This	salesman	is	concerned	about	his	safety	–	does	not	want	
to	be	agacked	by	bandits	

•  One	approach	he	could	take	(as	envisioned	by	Wagner):	
–  Life	insurance	policies	are	offered	to	travellers	
–  Cost	of	each	policy	is	based	on	evalua&on	of	safety	of	path	
–  Safest	path	=	cheapest	life	insurance	policy	
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Stagecoach	Problem:	Costs	

The	cost	of	the	standard	policy	on	the	stagecoach	run	from	state	
i	to	state	j denoted	by	cij is 
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1	 2	 4	 3	

5	 6	 7	

2	 7	 4	 6	

3	 3	 2	 4	

4	 4	 1	 5	

8	 9	

5	 1	 4	

6	 6	 3	

7	 3	 3	

10	

8	 3	

9	 4	

Which route minimizes the total cost of the policy? 



Myopic	Approach	

•  Making	the	decision	which	is	best	for	each	successive	stage	
need	not	yield	the	overall	op&mal	decision	

•  WHY?	

•  Selec&ng	the	cheapest	run	offered	by	each	successive	stage	
would	give	the	route	1	->	2	->	6	->	9	->	10.	

•  What	is	the	total	cost?	

•  Observa=on:	Sacrificing	a	ligle	on	one	stage	may	permit	
greater	savings	thereaXer.	
–  e.g.,	a	cheaper	alterna&ve	to	1	->	2	->	6	is	1	->	4	->	6	
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Is	Trial	and	Error	Useful?	

•  What	does	it	mean	to	solve	the	problem	(finding	the	cheapest	
cost	path)	by	trial	and	error?		
– What	are	the	trials	over?	What	is	the	error?	

•  How	many	possible	routes	do	we	have	in	this	problem?	
	Ans:	18	

•  Is	exhaus&ve	enumera&on	always	an	op&on?	How	does	the	
number	of	routes	scale?	
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Dynamic	Programming	Principle	

•  Start	with	a	small	por&on	of	the	problem	and	find	op&mal	
solu&on	for	this	smaller	problem	

•  Gradually	enlarge	the	problem	–	finding	the	current	op&mal	
solu&on	from	the	previous	one	

	…	un&l	original	problem	is	solved	in	its	en&rety	

•  This	general	philosophy	is	the	essence	of	the	DP	principle	
–  The	details	are	implemented	in	many	different	ways	in	
different	specialised	scenarios	
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Solving	the	Stagecoach	Problem	

•  At	stage	n,	consider	the	decision	variable	xn	(n = 1,2,3,4).	
•  The	selected	route	is:	

	 	Which	state	is	implied	by	x4?	

•  Total	cost	of	the	overall	best	policy	for	the	remaining	stages,	
given	that	the	salesman	is	in	state	s	and	selects	xn	as	the	
immediate	des&na&on:	
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1 ! x1 ! x2 ! x3 ! x4

fn(s, xn)

x

⇤
n = argmin fn(s, xn)

f

⇤
n(s) = minimum value of fn(s, xn)

f

⇤
n(s) = fn(s, x

⇤
n)



Solving	the	Stagecoach	Problem	

•  The	objec&ve	is	to	determine	
	and	the	corresponding	op&mal	policy	achieving	this	

•  DP	achieves	this	by	successively	finding	
	which	will	lead	us	to	the	desired		

•  When	the	salesman	has	only	one	more	stage	to	go,	his	route	
is	en&rely	determined	by	his	final	des&na&on.	Therefore,	
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f⇤
1 (1)

f⇤
4 (s), f

⇤
3 (s), f

⇤
2 (s)

f⇤
1 (1)



Solving	the	Stagecoach	Problem	

•  What	about	when	the	salesman	has	two	more	stages	to	go?	

•  Assume	salesman	is	at	stage	5	–	he	must	next	go	either	to	
stage	8	or	9	at	cost	of	1	or	4	respec&vely	
–  If	he	chooses	stage	8,	minimum	addi&onal	cost	aXer	reaching	
there	is	3	(table	in	earlier	slide)	

–  So,	cost	for	that	decision	is	1	+	3	=	4	
–  Total	cost	if	he	chooses	stage	9	is	4	+	4	=	8	

•  Therefore,	he	should	choose	state	8	
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The	Two-stage	Problem	
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f3(s, x3) = c

sx3 + f

⇤
4 (x3)



Likewise,	Three-stage	Problem	
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f2(s, x2) = c

sx2 + f

⇤
3 (x2)



Finally,	the	Four-stage	Problem	
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f1(s, x1) = c

sx1 + f

⇤
2 (x1)

Optimal Solution: 
Salesman should first go to either 3 or 4 
Say, he chooses 3, the three-stage problem result is 5 
Which leads to the two-stage problem result of 8 
And, of course, finally 10 



Characteris&cs	of	DP	Problems	

The	stagecoach	problem	might	have	sounded	strange,	but	it	is	
the	literal	instan&a&on	of	key	DP	terms	
	
DP	problems	all	share	certain	features:	
1.  The	problem	can	be	divided	into	stages,	with	a	policy	

decision	required	at	each	stage	
2.  Each	stage	has	several	states	associated	with	it	
3.  The	effect	of	the	policy	decision	at	each	stage	is	to	transform	

the	current	state	into	a	state	associated	with	the	next	stage	
(could	be	according	to	a	probability	distribu&on,	as	we’ll	see	
next).	
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Characteris&cs	of	DP	Problems,	contd.	

5.  Given	the	current	state,	an	op&mal	policy	for	the	remaining	
stages	is	independent	of	the	policy	adopted	in	previous	
stages	

6.  The	solu&on	procedure	begins	by	finding	the	op&mal	policy	
for	each	state	of	the	last	stage.	

7.  Recursive	rela&onship	iden&fies	op&mal	policy	for	each	state	
at	stage	n,	given	op&mal	policy	for	each	state	at	stage	n+1:		

8.  Using	this	recursive	rela&onship,	the	solu&on	procedure	
moves	backward	stage	by	stage	–	un&l	finding	op&mal	policy	
from	ini&al	stage	
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f

⇤
n

(s) = min
xn

{c
sxn + f

⇤
n+1(xn

)}



Let	us	now	consider	a	problem	where	the	
transi&ons	may	not	be	determinis&c:	

	
	

(A	ligle	bit	about)	Markov	Chains	and	Decisions	
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Stochas&c	Processes	

•  A	stochas0c	process	is	an	indexed	collec&on	of	random	
variables					.	
–  e.g.,	collec&on	of	weekly	demands	for	a	product	

•  One	type:	At	a	par&cular	&me	t,	labelled	by	integers,	system	is	
found	in	exactly	one	of	a	finite	number	of	mutually	exclusive	
and	exhaus&ve	categories	or	states,	labelled	by	integers	too	

•  Process	could	be	embedded	in	that	&me	points	correspond	to	
occurrence	of	specific	events	(or	&me	may	be	equi-spaced)	

•  Random	variables	may	depend	on	others,	e.g.,	
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Markov	Chains	

•  The	stochas&c	process	is	said	to	have	a	Markovian	property	if	

•  Markovian	property	means	that	the	condi&onal	probability	of	
a	future	event	given	any	past	events	and	current	state,	is	
independent	of	past	states	and	depends	only	on	present	

•  The	condi&onal	probabili&es	are	transi=on	probabili=es,	

•  These	are	sta&onary	if	&me	invariant,	called	pij,	
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Markov	Chains	

•  Looking	forward	in	&me,	n-step	transi=on	probabili=es,	pij
(n)

•  One	can	write	a	transi&on	matrix,	

•  A	stochas&c	process	is	a	finite-state	Markov	chain	if	it	has,	
–  Finite	number	of	states	
–  Markovian	property	
–  Sta&onary	transi&on	probabili&es	
–  A	set	of	ini&al	probabili&es P{X0 = i} for	all	i
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Markov	Chains	

•  n-step	transi&on	probabili&es	can	be	obtained	from	1-step	
transi&on	probabili&es	recursively	(Chapman-Kolmogorov)	

	
•  We	can	get	this	via	the	matrix	too	
	
•  First	Passage	Time:	number	of	transi&ons	to	go	from	i to	j	for	

the	first	&me	
–  If	i =	j, this	is	the	recurrence	=me	
–  In	general,	this	itself	is	a	random	variable	

8/2/19	 26	



Markov	Chains	

•  n-step	recursive	rela&onship	for	first	passage	&me	

•  For	fixed	i	and	j,	these	fij
(n)	are	nonnega&ve	numbers	so	that	

•  If,																							,	state	is	recurrent;	If	n=1	then	it	is	absorbing	
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What does <1 signify? 



Markov	Chains:	Long-Run	Proper&es	
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•  Consider	this	transi&on	matrix	of	an	inventory	process:	

•  This	captures	the	evolu&on	of	inventory	levels	in	a	store	
– What	do	the	0	values	mean?	
–  Other	proper&es	of	this	matrix?	



Markov	Chains:	Long-Run	Proper&es	

		The	corresponding	8-step	transi&on	matrix	becomes:	
	
	
	
	Interes&ng	property:	probability	of	being	in	state	j	aXer	8	
weeks	appears	independent	of	ini0al	level	of	inventory.	

•  For	an	irreducible	ergodic	Markov	chain,	one	has	limi&ng	
probability	

Reciprocal gives you 
recurrence time
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Markov	Decision	Model	

•  Consider	the	following	applica&on:	machine	maintenance	
•  A	factory	has	a	machine	that	deteriorates	rapidly	in	quality	

and	output	and	is	inspected	periodically,	e.g.,	daily	
•  Inspec&on	declares	the	machine	to	be	in	four	possible	states:	

–  0:	Good	as	new	
–  1:	Operable,	minor	deteriora&on	
–  2:	Operable,	major	deteriora&on	
–  3:	Inoperable	

•  Let	Xt	denote	this	observed	state	
–  evolves	according	to	some	“law	of	mo&on”,	it	is	a	stochas&c	process	
–  Furthermore,	assume	it	is	a	finite	state	Markov	chain	
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Markov	Decision	Model	

•  Transi&on	matrix	is	based	on	the	following:	

•  Once	the	machine	goes	inoperable,	it	stays	there	un&l	repairs	
–  If	no	repairs,	eventually,	it	reaches	this	state	which	is	absorbing!	

•  Repair	is	an	ac=on	–	a	very	simple	maintenance	policy.	
–  e.g.,	machine	from	from	state	3	to	state	0	
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Markov	Decision	Model	

•  There	are	costs	as	system	evolves:	
–  State	0:	cost	0	
–  State	1:	cost	1000	
–  State	2:	cost	3000	

•  Replacement	cost,	taking	state	3	to	0,	is	4000	(and	lost	
produc&on	of	2000),	so	cost	=	6000	

•  The	modified	transi&on	probabili&es	are:	
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Markov	Decision	Model	

•  Simple	ques&on	(a	behavioural	property):		
	What	is	the	average	cost	of	this	maintenance	policy?	

•  Compute	the	steady	state	probabili&es:	

	

•  (Long	run)	expected	average	cost	per	day,	
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How? 



Markov	Decision	Model	

•  Consider	a	slightly	more	elaborate	policy:	
–  When	it	is	inoperable	or	needing	major	repairs,	replace	

•  Transi&on	matrix	now	changes	a	ligle	bit	
•  Permit	one	more	possible	ac&on:	overhaul	

–  Go	back	to	minor	repairs	state	(1)	for	the	next	&me	step	
–  Not	possible	if	truly	inoperable,	but	can	go	from	major	to	minor	

•  Key	point	about	the	system	behaviour.	It	evolves	according	to	
–  “Laws	of	mo&on”	
–  Sequence	of	decisions	made	(ac&ons	from	{1:	none,2:overhaul,3:	replace})	

•  Stochas&c	process	is	now	defined	in	terms	of	{Xt}	and	{Δt}
–  Policy,	R,	is	a	rule	for	making	decisions	

•  Could	use	all	history,	although	popular	choice	is	(current)	state-based	
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Markov	Decision	Model	

•  There	is	a	space	of	poten&al	policies,	e.g.,	

•  Each	policy	defines	a	transi&on	matrix,	e.g.,	for	Rb

Which policy is best? 
Need costs…. 
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Markov	Decision	Model	

•  Cik	=	expected	cost	incurred	during	next	transi&on	if	system	is	
in	state	i	and	decision	k	is	made	

•  The	long	run	average	expected	cost	for	each	policy	may	be	
computed	using	

State	 Dec.	 1	 2	 3	

0	 0	 4	 6	

1	 1	 4	 6	

2	 3	 4	 6	

3	 ∞	 ∞	 6	

Rb is best 
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So,	What	is	a	Policy?	

•  A	“program”	
•  Map	from	states	(or	situa&ons	in	the	decision	problem)	to	

ac&ons	that	could	be	taken	
–  e.g.,	if	in	‘level	2’	state,	call	contractor	for	overhaul	
–  If	less	than	3	DVDs	of	a	film,	place	an	order	for	2	more	

•  A	probability	distribu&on	π(s,a)	
–  A	joint	probability	distribu&on	over	states	and	ac&ons	
–  If	in	a	state	s1,	then	with	probability	defined	by	π,	take	
ac&on	a1 
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U=lity	and	Decision	Theory:	

How	should	a	robot	incorporate	no=ons	of	choice?	



Types	of	Decisions	

•  Who	makes	it?	
–  Individual	
–  ‘Group’	

•  What	are	the	condi&ons?	
–  Certainty	
–  Risk	
–  Uncertainty	
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How	to	Model	Decision	under	Certainty?	

•  Given	a	set	of	possible	acts	
•  Choose	one	that	maximizes	some	given	index	

	If	a	is	a	generic	act	in	a	set	of	feasible	acts	A,	f(a)	is	an	index	
being	maximized,	then	
	Problem:	Find	a*	in	A	such	that	f(a*)	>	f(a)	for	all	a	in	A.	

	
The	index	f	plays	a	key	role,	e.g.,	think	of	buying	a	pain&ng.	
	Essen&al	problem:	How	should	the	subject	select	an	index	
func&on	such	that	her	choice	reduces	to	finding	maximizers?	
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Opera&onal	Way	to	Find	an	Index	Func&on	

•  Observe	subject’s	behaviour	in	restricted	seNngs	and	predict	
purchase	behaviour	from	that:	

•  Instruct	the	subject	as	follows:	
–  Here	are	ten	valuable	reproduc&ons	
–  We	will	present	these	to	you	in	pairs	
–  You	will	tell	us	which	one	of	the	pair	you	prefer	to	own	
–  AXer	you	have	evaluated	all	pairs,	we	will	pick	a	pair	at	random	and	

present	you	with	the	choice	you	previously	made	(it	is	to	your	
advantage	to	remember	your	true	tastes)	

•  The	subject’s	behaviour	is	as	though	there	is	a	ranking	over	all	
pain&ngs,	so	each	pain&ng	can	be	summarized	by	a	number	
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Some	Proper&es	of	this	Ranking	

•  Transi0vity:	Previous	argument	only	makes	sense	if	the	rank	is	
transi&ve	–	if	A	is	preferred	in	(A,	B)	and	B	is	preferred	in	(B,	
C)	then	A	is	preferred	in	(A,	C);	and	this	holds	for	all	triples	of	
alterna&ves	A,	B	and	C	

•  Ordinal	nature	of	index:	One	is	tempted	to	turn	the	ranking	
into	a	latent	measure	of	‘sa&sfac&on’	but	that	is	a	mistake	as	
u&li&es	are	non-unique.	
	e.g.,	we	could	assign	3	u&les	to	A,	2	u&les	to	B	and	1	u&le	to	C	
to	explain	the	choice	behaviour	
	Equally,	30,	20.24	and	3.14	would	yield	the	same	choice	

While	it	is	OK	to	compare	indices,	it	is	not	OK	to	add	or	mul&ply	
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What	Happens	if	we	Relax	Transi&vity?	

•  Assume	Pandora	says	(in	the	pairwise	comparisons):	
–  Apple	<	Orange	
–  Orange	<	Fig	
–  Fig	<	Apple	

•  Is	this	a	problem	for	Pandora?	Why?	

•  Assume	a	merchant	who	transacts	with	her	as	follows:	
–  Pandora	has	an	Apple	at	the	start	of	the	conversa&on	
–  He	offers	to	exchange	Orange	for	Apple,	if	she	gives	him	a	penny	
–  He	then	offers	an	exchange	of	Fig	for	Orange,	at	the	price	of	a	penny	
–  Then,	offers	Apple	for	the	Fig,	for	a	penny	
–  Now,	what	is	Pandora’s	net	posi=on?	
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Decision	Making	under	Risk	

•  Ini&ally	appeared	as	analysis	of	fair	gambles,	needed	some	
no&ons	of	u&lity	

•  Gamble	has	n	outcomes,	each	worth	a1,	…,	an	
•  The	probability	of	each	outcome	is	p1,	…,	pn	
•  How	much	is	it	worth	to	par&cipate	in	this	gamble?	
	 	b	=	a1 p1	+	…	+	an pn	
	One	may	treat	this	monetary	expected	value	as	a	fair	price	

	Is	this	a	sufficient	descrip&on	of	choice	behaviour	under	risk?	

8/2/19	 44	



St.	Petersburg	Paradox	of	D.	Bernoulli	

•  A	fair	coin	is	tossed	un&l	a	head	appears	
•  Gambler	receives	2n	if	the	first	head	appears	on	trial	n
•  Probability	of	this	event	=	probability	of	tail	in	first	(n-1)	trials	

and	head	on	trial	n, i.e., (1/2)n

		
	Expected	value	=	2.(1/2) + 4.(1/2)2 + 8.(1/2)8 +… = ∞

•  Are	you	willing	to	bet	in	this	way?	Is	anyone?	
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Defining	U&lity	

•  Bernoulli	went	on	to	argue	that	people	do	not	act	in	this	way	
•  The	thing	to	average	is	the	‘intrinsic	worth’	of	the	monetary	

values,	not	the	absolute	values	
	e.g.,	intrinsic	worth	of	money	may	increase	with	money	but	at	
a	diminishing	rate	

	
•  Let	us	say	u&lity	of	m	is	log10 m,	then	expected	value	is,	

log10 2.(1/2) + log10 4.(1/2)2 + log10 8.(1/2)8 +… = b < ∞	
	Monetary	fair	price	of	the	gamble	is	a	where	log10a	=	b.	
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Some	Cri&ques	of	Bernoulli’s	Formula&on	

	von	Neumann	and	Morgenstern	(vNM),	who	‘started’	game	
theory,	raised	the	following	ques&ons:	

•  The	assignment	of	u&lity	to	money	is	arbitrary	and	ad	hoc	
–  There	are	an	infinity	of	func&ons	that	capture	‘diminishing	
rate’,	how	should	we	choose?	

–  The	associa&on	may	vary	from	person	to	person	

•  Why	is	the	defini&on	of	the	decision	based	upon	expected	
value	of	this	no&on	of	u&lity?	
–  Is	this	actually	descrip&ve	of	a	single	gambler,	in	“one-shot”	choice?	
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von	Neumann	&	Morgenstern	Formula&on	

•  If	a	person	is	able	to	express	preferences	between	every	
possible	pair	of	gambles	
	where	gambles	are	taken	over	some	basic	set	of	alterna&ves	

•  Then	one	can	introduce	u&lity	associa&ons	to	the	basic	
alterna&ves	in	such	a	manner	that	

•  If	the	person	is	guided	solely	by	the	u&lity	expected	value,	he	
is	ac0ng	in	accord	with	his	true	tastes.	
–  provided	his	tastes	are	consistent	in	some	way	
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Construc&ng	U&lity	Func&ons	

•  Suppose	we	know	the	following	preference	order:	
–  A	<	b	~	c	<	d	<	e	

•  The	following	are	u&lity	func&ons	that	capture	this:	

–  So,	in	situa&ons	like	St	Petersburg	paradox,	the	revealed	preference	of	
any	realis&c	player	may	differ	from	the	case	of	infinite	expected	value	

–  Sa&sfac&on	at	some	large	value,	risk	tolerance,	&me	preference,	etc.	
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a	 b	 c	 d	 E	

U	 0	 1/2	 1/2	 3/4	 1	

V	 -1	 1	 1	 2	 3	

W	 -8	 0	 0	 1	 8	



Certainty	Equivalents	and	Indifference	

•  The	previous	statement	applies	equally	well	to	certain	events	
and	gambles	or	logeries	

•  So,	even	aNtudes	regarding	tradeoffs	between	the	two	ought	
to	be	captured	

•  Basic	issue	–	how	to	compare?	
•  Imagine	the	following	choice	(A	>	B	>	C	pref.)	:	(a)	you	get	B	

for	certain,	(b)	you	get	A	with	probability	p	and	C	otherwise	
•  If	p	is	near	1,	op&on	b	is	beger;	if	p	is	near	0,	then	op&on	a:	

there	is	a	single	point	where	we	switch	
•  Indifference	is	described	as	something	like	
	 	(2/3)	(1)	+	(1	–	2/3)	(0)	=	2/3	
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Caveats	

•  As	before,	we	need	to	remember	that	the	u&lity	values	should	
not	be	mis-interpreted	

•  The	number	2/3	is	determines	by	choices	among	risky	
alterna&ves	and	reflect	aNtude	to	‘gambling’	

•  For	instance,	imagine	a	subject	who	would	be	indifferent	to	
paying	$9	and	a	50-50	chance	of	paying	$10	or	nothing;	

•  This	suggests	u&li&es	for	$0,	-$9,	-$10	are	1,	½,	0.	
•  However,	we	can’t	say	it	is	just	as	enjoyable	for	him	to	go	

from	-$10	to	-$9	as	it	is	to	go	from	-$9	to	$0!	
•  Subject’s	preferences	among	alterna&ves	or	logeries	come	

prior	to	numerical	characteriza&on	of	them	
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Axioma&c	Treatment	of	U&lity	

vNM	and	others	formalize	the	above	to	define	axioms	for	u&lity:	
1)  Any	two	alterna&ves	shall	be	comparable,	i.e.,	given	any	two,	

subject	will	prefer	one	over	the	other	of	be	indifferent	
2)  Both	preference	and	indifference	rela&ons	for	logeries	are	

transi&ve	
3)  In	case	a	logery	has	as	one	of	its	alterna&ves	another	logery,	

then	the	first	logery	is	decomposable	into	the	more	basic	
alterna&ves	through	the	use	of	the	probability	calculus	

4)  If	two	logeries	are	indifferent	to	the	subject	then	they	are	
interchangeable	as	alterna&ves	in	any	compound	logery	
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Axioma&c	Treatment	of	U&lity,	contd.	

vNM	and	others	formalize	the	above	to	define	axioms	for	u&lity:	
5)  If	two	logeries	involve	the	same	two	alterna&ves,	then	the	

one	in	which	the	more	preferred	alterna&ve	has	a	higher	
probability	of	occurring	is	itself	preferred	

6)  If	A	is	preferred	to	B	and	B	to	C,	then	there	exists	a	logery	
involving	A	and	C	(with	appropriate	probabili&es)	which	is	
indifferent	to	B	
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Decision	Making	under	Uncertainty		
•  A	choice	must	be	made	from	among	a	set	of	acts,	A1, …, Am.	
•  The	rela&ve	desirability	of	these	acts	depends	on	which	state	

of	nature	prevails,	either	s1, …, sn .

•  As	decision	maker	we	know	that	one	of	several	things	is	true	
and	this	influences	our	choice	but	we	do	not	have	a	
probabilis&c	characteriza&on	of	these	alterna&ves	

•  Savage’s	omelet	problem:	Your	friend	has	broken	5	good	eggs	
into	a	bowl	when	you	come	in	to	volunteer	and	finish	the	
omelet.	A	sixth	egg	lies	unbroken	(you	must	use	it	or	waste	it	
altogether).	Your	three	acts:	break	it	into	bowl,	break	it	into	
saucer	–	inspect	and	pour	into	bowl,	throw	it	uninspected	
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Decision	Making	under	Uncertainty	

•  To	each	outcome,	we	could	assign	a	u&lity	and	maximize	it	
•  What	do	we	know	about	the	state	of	nature?	

–  We	may	act	as	though	there	is	one	true	state	and	we	just	don’t	know	
it	

–  If	we	assume	a	probability	over	s,	this	is	decision	under	risk	

•  What	criteria	do	we	have	for	a	decision	problem	under	
uncertainty	(d.p.u.u.)?	
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Some	Criteria	for	d.p.u.u.	

	Maximin	criterion:	To	each	act,	assign	its	security	level	as	an	index.	
Index	of	Ai	is	the	minimum	of	the	u&li&es	ui1, …, uin

	 	Choose	the	act	whose	associated	index	is	maximum.	
	
	
	
-  What	is	the	security	level	for	each	act?	
-  What	happens	if	we	allow	for	mixed	strategies	(i.e.,	akin	to	a	

compound	logery,	e.g.,	p	=	0.5	for	a1	and	p	=	0.5	for	a2)	?	
-  Interpreta&on	as	game	against	nature:	best	response	against	

nature’s	minimax	strategy	(least	favourable	a	priori	strategy)	

s1	 s2	

A1	 0	 1	

A2	 1	 0	
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Point	to	Ponder	about	Maximin	

•  Is	nature	a	conscious	adversary?!	
•  Consider:	

•  What	are	the	safety	values	for	the	ac&ons?	
–  If	mixed	strategies	are	allowed?	

•  What	if	100	went	up	to	106	and	1	came	down	to	0.0001?	
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s1	 s2	

A1	 0	 100	

A2	 1	 1	



Some	Criteria	for	d.p.u.u.	

•  Minimax	risk	criterion	(Savage):	Consider	a	setup	as	follows:	

		
	If	s1	is	the	true	state,	choosing	A2	poses	no	‘risk’	whereas	if	s2	is	
the	true	state	then	considerable	‘risk’	in	A2.	
		
	Savage’s	procedure:	(i)	Create	new	risk	payoffs	which	are	amounts	
to	be	added	to	u&lity	to	match	maximum	column	u&lity,	(ii)	Choose	
act	which	minimizes	maximum	risk	index	

s1	 s2	

A1	 0	 100	

A2	 1	 1	
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Minimax	Risk	Criterion	

•  Transform	U&lity	Payoff	to	Risk	Payoff:	

•  Take	the	uij	and	define	rij	so	that	it	is	the	amount	that	has	to	
be	added	to	uij	to	equal	maximum	u&lity	payoff	in	column	j.	

•  Cri&que	(due	to	Chernoff):	
–  “Regret”	may	not	be	measured	by	u&lity	difference	
–  Different	states	of	nature	may	not	be	traded	off	properly	
–  Taking	away	an	irrelevant	(obviously	bad)	ac=on	may	change	op=mal	

decision!	
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s1	 s2	

A1	 0	 100	

A2	 1	 1	

s1	 s2	

A1	 1	 0	

A2	 0	 99	



More	Criteria	for	d.p.u.u.	

•  Pessimism-op=mism	index	criterion	of	Hurwicz:	
	Let	mi	and	Mi	be	minimum	and	maximum	u&lity.	Assume	a	
fixed	pessimism-op&mism	index,	α.	To	each	act,	associate	an	
α-index	αmi	+	(1	–	α)	Mi.		
	Of	two	acts,	the	one	with	higher	α-index	is	preferred.	

•  “Principle	of	insufficient	reason”:	If	one	is	completely	
ignorant,	one	should	act	as	though	all	states	are	equally	likely;	
so	choice	should	be	based	on	a	u&lity	index	which	is	the	
average	of	u&lity	for	all	possible	states	for	any	act	

8/2/19	 60	

What is the effect of the way we enumerate possible states 
of nature? 



	
Use	of	Bayesian	Principles	for	Decisions:	

Simple	Example	

	Bob	observes	the	weather	forecast	before	
deciding	whether	to	carry	an	umbrella	to	work.	
Bob	wishes	to	stay	dry,	but	carrying	an	umbrella	
around	is	annoying.		

Forecast

Umbre
lla
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Setup	of	Decision	Theory	

•  Set	A		of	ac&ons	
–  Umbrella={true,	false}	

•  Set	E	of	(unobserved)	events		
–  Weather={rain,	sun}	

•  Set	O	of	observa&ons		
–  Forecast={rain,	sun}			

•  Probability	distribu&on	over	
–  events	P(E)	
–  observa&ons	given	events	

P(O	|	E)	

•  U&lity	func&on	from	ac&ons	
and	events	to	real	numbers.	

Forecast

Weather sun rain

sun 0.6 0.4

rain 0.4 0.6

Weather

sun 0.7

rain 0.3

Weather Umbrella Utility

sun TRUE -10

sun FALSE 100

rain TRUE 100

rain FALSE -10
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Choosing	the	Best	Ac&on	
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Compu&ng	an	Op&mal	Strategy	for	Bob	

•  A	strategy	for	Bob	must	specify	whether	to	take	an	
umbrella	for	any	possible	value	of	the	forecast.	

•  Suppose	forecast	predicts	sun.	What	is	Bob’s	
expected	u&lity	for	taking	an	umbrella	?		
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Compu&ng	Expected	U&lity	for	Bob	for	
taking	Umbrella	

Weather Umbrella Utility

sun TRUE -10

sun FALSE 100

rain TRUE 100

rain FALSE -10
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Marginal probability

Bayes Rule
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Compu&ng	Expected	Cost	

We	now	compute	the	expected	u&lity	for	Bob	for	the	case	
where	Bob	does	not	take	an	umbrella.	
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Compu&ng	Bob’s	Best	Ac&on	

(15.3) (74.7) 

If	the	forecast	predicts	sun,	then	Bob	should	not	take	the	
umbrella	
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Compu&ng	Bob’s	Best	Ac&on	

	We	now	compute	Bob’s	decision	for	the	case	where	
the	forecast	predicts	rain.	We	have	that	

Forecast
rain sun

Umbrella FALSE FALSE

We	get	the	following	strategy	for	Bob	

(34) (56) 
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Making	Sequen&al	Decisions	

	The	newspaper	forecast	is	more	reliable,	but	costs	
money,	decreasing	Bob’s	u&lity	by	10	units.	There	
are	now	two	decisions:	

–  Buying	a	newspaper		
–  Carrying	an	umbrella	

Forecast

Weather sun rain

sun 0.8 0.2

rain 0.2 0.8

Weather NP Umbrella Utility

sun TRUE TRUE -20

sun TRUE FALSE 90

rain TRUE TRUE 90

rain TRUE FALSE -20

... .... .... ....
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Making	Sequen&al	Decisions	

•  Choosing	the	best	ac&on	for	one	decision	depends	
on	the	ac&on	for	the	other	decision.	

•  How	to	weigh	the	tradeoff	between	these	two	
decisions	?		
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Marginal	probability	

Bayes	Rule	

Expected	u=lity	
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Decision	Trees	
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(0.62*79)+(0.38*50.4)= 
68.132

(0.54*74.7)+(0.46*56)= 
65.55

Solving	Decision	Trees	
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