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Objectives of this Lecture

Introduce the dynamic programming principle, a way to solve
sequential decision problems (such as path planning)

Introduce the Markov Decision Process model, and discuss
the nature of the policy arising in a similar sequential decision
problem with probabilistic transitions

— Includes recap of the notion of Markov Chains

In the second half, introduce different ways of posing decision
problems in terms of utilities, motivating principles of
Bayesian choices



Problem of Determining Paths




Getting from “A to B”: Bird’s Eye View
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Getting from “A to B”: Local View

Simulated drive through a rocky valley on Mars

Rover target point

Red area W-

Rover start point

How could we calculate the best path?
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Dynamic Programming (DP) Principle

Mathematical technique often useful for making a sequence
of inter-related decisions

Systematic procedure for determining the combination of
decisions that maximize overall effectiveness

There may not be a “standard form” of DP problems, instead
it is an approach to problem solving and algorithm design

We will try to understand this through a few example models,
solving for the “optimal policy” (the notion of which will
become clearer as we go along)



Stagecoach Problem

Simple thought experiment due to H.M. Wagner at Stanford

Consider a mythical American salesman from over a hundred
years ago. He needs to travel west from the east coast,
through unfriendly country with bandits.

He has a well defined start point and destination, but the
states he visits en route are up to his own choice

Let us visualize this, using numbered blocks for states



Stagecoach Problem: Possible Routes

Each box is a state (generically indexed by an integer, i)
Transitions, i.e., edges, can be annotated with a “cost”
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Stagecoach Problem: Setup

* The salesman needs to go through four stages to travel from
his point of departure in state 1 to destination in state 10

* This salesman is concerned about his safety — does not want
to be attacked by bandits

* One approach he could take (as envisioned by Wagner):
— Life insurance policies are offered to travellers

— Cost of each policy is based on evaluation of safety of path
— Safest path = cheapest life insurance policy
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Stagecoach Problem: Costs

The cost of the standard policy on the stagecoach run from state
i to state j denoted by ¢;; 1s
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Myopic Approach

Making the decision which is best for each successive stage
need not yield the overall optimal decision

WHY?

Selecting the cheapest run offered by each successive stage
would give the route 1 ->2->6->9->10.

What is the total cost?

Observation: Sacrificing a little on one stage may permit
greater savings thereafter.

— e.g., a cheaper alternativeto1->2->6is1->4->6



Is Trial and Error Useful?

What does it mean to solve the problem (finding the cheapest
cost path) by trial and error?

— What are the trials over? What is the error?

How many possible routes do we have in this problem?
Ans: 18

|s exhaustive enumeration always an option? How does the
number of routes scale?



Dynamic Programming Principle

e Start with a small portion of the problem and find optimal
solution for this smaller problem

e Gradually enlarge the problem — finding the current optimal
solution from the previous one

... until original problem is solved in its entirety

* This general philosophy is the essence of the DP principle

— The details are implemented in many different ways in
different specialised scenarios

8/2/19
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Solving the Stagecoach Problem

* At stage n, consider the decision variable x, (n = 1,2,3,4).
* Theselectedrouteis: 1 > 21 — 9 — 3 — T4
Which state is implied by x,?

* Total cost of the overall best policy for the remaining stages,

given that the salesman is in state s and selects x,, as the
immediate destination: f, (s, z,)

xr, = argmin f, (s, xy)
(s) = minimum value of f,(s,xy)
,:(S) — fn(Sax;:)

8/2/19
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Solving the Stagecoach Problem

* The objective is to determine f7 (1)

and the corresponding optimal policy achieving this

* DP achieves this by successively finding f;(s), f3(s), f5(s)
which will lead us to the desired f1 (1)

* When the salesman has only one more stage to go, his route
is entirely determined by his final destination. Therefore,

s || fi(s) | a3
8 3| 10
9 4 | 10
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Solving the Stagecoach Problem

 What about when the salesman has two more stages to go?

 Assume salesman is at stage 5 — he must next go either to
stage 8 or 9 at cost of 1 or 4 respectively

— If he chooses stage 8, minimum additional cost after reaching
there is 3 (table in earlier slide)

— So, cost for that decisionis1+3 =4
— Total cost if he chooses stage 9is4+4 =8

 Therefore, he should choose state 8

8/2/19
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The Two-stage Problem

f3(87333) — Cszx4 + fI(IB)

)
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Likewise, Three-stage Problem

fa(s,2) = cou, + f3(22)

A
s \
s\wa || 5 ] 6 | T | f3(s) | a3
2 11t [12] 11 [5or6
3 7191w 7 5
4 88 ]11] 8 [5o0r6
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Finally, the Four-stage Problem

fl(saajl) — Csx4 + f2*($1)
A A\

s\e1 || 2 | 3 | 4 | f{(s) ]
1 13 ] 11 | 11 11 | 3or4

Optimal Solution:

Salesman should first go to either 3 or 4

Say, he chooses 3, the three-stage problem result is 5
Which leads to the two-stage problem result of 8

And, of course, finally 10
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Characteristics of DP Problems

The stagecoach problem might have sounded strange, but it is
the literal instantiation of key DP terms

DP problems all share certain features:

1. The problem can be divided into stages, with a policy
decision required at each stage

2. Each stage has several states associated with it

The effect of the policy decision at each stage is to transform
the current state into a state associated with the next stage

(could be according to a probability distribution, as we’ll see
next).
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Characteristics of DP Problems, contd.

5. Given the current state, an optimal policy for the remaining
stages is independent of the policy adopted in previous
stages

6. The solution procedure begins by finding the optimal policy
for each state of the last stage.

7. Recursive relationship identifies optimal policy for each state
at stage n, given optimal policy for each state at stage n+1:

fn(s) = ngin{cszvn + f;+1(xn)}

mn

8. Using this recursive relationship, the solution procedure
moves backward stage by stage — until finding optimal policy
from initial stage
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Let us now consider a problem where the
transitions may not be deterministic:

(A little bit about) Markov Chains and Decisions
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Stochastic Processes

A stochastic process is an indexed collection of random
variables {X;}

— e.g., collection of weekly demands for a product
One type: At a particular time ¢, labelled by integers, system is

found in exactly one of a finite number of mutually exclusive
and exhaustive categories or states, labelled by integers too

Process could be embedded in that time points correspond to
occurrence of specific events (or time may be equi-spaced)

Random variables may depend on others, e.g.,

max{(3 — Di+1),0},ifX; <0

.‘X'_ — J i 4 7 . > .
17 U max{(Xy — Diga),0},if X, > 0



Markov Chains

* The stochastic process is said to have a Markovian property if

P{Xi11 = jlXo = ko, X1 = k1, ... Ximo1 = ki1, Xy = i} = P{Xy1 = j| Xy =1}

for ¢ = 0.1,... and every sequence ¢i,j,ko,....ki—1.

* Markovian property means that the conditional probability of
a future event given any past events and current state, is
independent of past states and depends only on present

* The conditional probabilities are transition probabilities,
P{Xi11 = j| Xy =i}
* These are stationary if time invariant, called Pij
P{Xis1 =j|X; =i} = P{X1 =j|Xo=1i},Vt =0,1,...
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Markov Chains

* Looking forward in time, n-step transition probabilities, pij(”)

P{X, ., =7l X =i} =P{X,, =j|Xo=1},Yt=0,1,...
* One can write a transition matrix, - (n) (n) -
Poo Ponr
P(n) p— .
_(n) _(n)
L Pyvo -+ Py -

* A stochastic process is a finite-state Markov chain if it has,
— Finite number of states
— Markovian property
— Stationary transition probabilities
— A set of initial probabilities P{X, = i} for all i
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Markov Chains

* n-step transition probabilities can be obtained from 1-step
transition probabilities recursively (Chapman-Kolmogorov)

M
(n) _ (©), (P=v) s s )y
pij o Zpik PA.j s V2, ], O0<v<n
k=0

* We can get this via the matrix too
pP" =pp.. .P=pP'=pPprlt=prlp

* First Passage Time: number of transitions to go from i to j for
the first time

— Ifi =, this is the recurrence time
— In general, this itself is a random variable
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Markov Chains

e n-step recursive relationship for first passage time

(1) (1) ,
(2) _ (2) (1),
fij" =i — Iij Piis

(n) _ () _ £(1), (n=1) _ £(2), (n—2) (n—1),
Ly~ =pii’ = Fypy;  — i Py =t P

* For fixed i and j, these ;™ are nonnegative numbers so that

Z ) <1 What does <1 signify?
n=1

« If, Y fiY =1, stateis recurrent; If n=1 then it is absorbing

n=1
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Markov Chains: Long-Run Properties

* Consider this transition matrix of an inventory process:

- 0.08 0.184 0.368 0.368 |
0.632 0.368 0 0
0.264 0.368 0.368 0
0.08 0.184 0.368 0.368

PY =p=

* This captures the evolution of inventory levels in a store
— What do the 0 values mean?
— Other properties of this matrix?
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Markov Chains: Long-Run Properties

The corresponding 8-step transition matrix becomes:

[ 0.286 0.285 0.264 0.166
0.286 0.285 0.264 0.166
0.286 0.285 0.264 0.166

| 0.286 0.285 0.264 0.166 |

p® = p® =

Interesting property: probability of being in state j after 8
weeks appears independent of initial level of inventory.

* For anirreducible ergodic Markov chain, one has limiting
probability

lim p

n— o0 gy \

Reciprocal gives you

M o recurrence time
T = Z TiPij, V] = O M
i=0
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Markov Decision Model

Consider the following application: machine maintenance

A factory has a machine that deteriorates rapidly in quality
and output and is inspected periodically, e.g., daily

Inspection declares the machine to be in four possible states:
— 0: Good as new

— 1: Operable, minor deterioration
— 2: Operable, major deterioration
— 3:Inoperable

Let X, denote this observed state

— evolves according to some “law of motion”, it is a stochastic process
— Furthermore, assume it is a finite state Markov chain



* Transition matrix is based on the following:

Markov Decision Model

States | O 1 2 3
0 O 7/8 1 1/16 | 1/16
1 O34 1/8 1/8
2 O O 1/2 1/2
3 O O 0 1

* Once the machine goes inoperable, it stays there until repairs

* Repair is an action — a very simple maintenance policy.

8/2/19

— If no repairs, eventually, it reaches this state which is absorbing!

— e.g., machine from from state 3 to state O
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Markov Decision Model

* There are costs as system evolves:
— State 0: cost O
— State 1: cost 1000
— State 2: cost 3000

 Replacement cost, taking state 3 to 0, is 4000 (and lost
production of 2000), so cost = 6000

 The modified transition probabilities are:

8/2/19

States | 0 1 2 3
0 O 7/8 1 1/16 | 1/16
1 O34 1/8 1/8
2 0l O 1/2 1/2
3 11 0 0 0

32



Markov Decision Model

* Simple question (a behavioural property):
What is the average cost of this maintenance policy?

 Compute the steady state probabilities:

2 T 2 2 How?

* (Long run) expected average cost per day,

25000

07y 4+ 10007, + 30007y + 600073 = — 1923.08

8/2/19
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Markov Decision Model

* Consider a slightly more elaborate policy:
— When itis inoperable or needing major repairs, replace
* Transition matrix now changes a little bit
* Permit one more possible action: overhaul
— Go back to minor repairs state (1) for the next time step
— Not possible if truly inoperable, but can go from major to minor
* Key point about the system behaviour. It evolves according to
— “Laws of motion”

— Sequence of decisions made (actions from {1: none,2:overhaul,3: replace})

* Stochastic process is now defined in terms of {X } and {A,}
— Policy, R, is a rule for making decisions
* Could use all history, although popular choice is (current) state-based
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* There is a space of potential policies, e.g.,

Policies | dp(R) | di(R) | do(R) | d3(R)
R, 1 3
Ry 2 3
R. 3 3

d 3 3

States | 0 | 1 2 3
0 O(7/8 | 1/16 | 1/16
1 O34 1/8 1/8
2 0 1 0 0
3 1] O 0 0

Markov Decision Model

* Each policy defines a transition matrix, e.g., for R,

Which policy is best?
Need costs....

35



Markov Decision Model

* (), =expected cost incurred during next transition if system is
in state 7 and decision k is made

State

0
1
2
3

0
1
3

>~ b~ b

(o o)

8

6
6
6
6

* The long run average expected cost for each policy may be

computed using

8/2/19

M
E(C)=) Cym
1=0

R, is best
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So, What is a Policy?

e A“program”
 Map from states (or situations in the decision problem) to
actions that could be taken

— e.g., if in ‘level 2’ state, call contractor for overhaul
— If less than 3 DVDs of a film, place an order for 2 more

* A probability distribution 7t(s,a)
— A joint probability distribution over states and actions

— If in a state s,, then with probability defined by =, take
action a,



Utility and Decision Theory:
How should a robot incorporate notions of choice?



e Who makes it?

— Individual
— ‘Group’

Types of Decisions

e What are the conditions?

8/2/19

— Certainty
— Risk

— Uncertainty
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How to Model Decision under Certainty?

* Given a set of possible acts
 Choose one that maximizes some given index

If a is a generic act in a set of feasible acts A, f(a) is an index
being maximized, then

Problem: Find a* in A such that f(a*) > f(a) for all a in A.

The index f plays a key role, e.g., think of buying a painting.

Essential problem: How should the subject select an index
function such that her choice reduces to finding maximizers?

8/2/19
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Operational Way to Find an Index Function

* Observe subject’s behaviour in restricted settings and predict
purchase behaviour from that:

* Instruct the subject as follows:

Here are ten valuable reproductions
We will present these to you in pairs
You will tell us which one of the pair you prefer to own

After you have evaluated all pairs, we will pick a pair at random and
present you with the choice you previously made (it is to your
advantage to remember your true tastes)

* The subject’s behaviour is as though there is a ranking over all
paintings, so each painting can be summarized by a number

8/2/19
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Some Properties of this Ranking

* Transitivity: Previous argument only makes sense if the rank is
transitive — if A is preferred in (A, B) and B is preferred in (B,
C) then A is preferred in (A, C); and this holds for all triples of
alternatives A, Band C

* Ordinal nature of index: One is tempted to turn the ranking
into a latent measure of ‘satisfaction’ but that is a mistake as
utilities are non-unique.

e.g., we could assign 3 utiles to A, 2 utiles to B and 1 utile to C
to explain the choice behaviour

Equally, 30, 20.24 and 3.14 would yield the same choice
While it is OK to compare indices, it is not OK to add or multiply



What Happens if we Relax Transitivity?

 Assume Pandora says (in the pairwise comparisons):
— Apple < Orange
— Orange < Fig
— Fig < Apple

* |sthis a problem for Pandora? Why?

* Assume a merchant who transacts with her as follows:
— Pandora has an Apple at the start of the conversation
— He offers to exchange Orange for Apple, if she gives him a penny
— He then offers an exchange of Fig for Orange, at the price of a penny
— Then, offers Apple for the Fig, for a penny
— Now, what is Pandora’s net position?
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Decision Making under Risk

Initially appeared as analysis of fair gambles, needed some

notions of utility

Gamble has n outcomes, each worth a, ..., a,

The probability of each outcomeisp,, ..., p,

How much is it worth to participate in this gamble?
b=a,p,+..+a,p,

One may treat this monetary expected value as a fair price

Is this a sufficient description of choice behaviour under risk?



St. Petersburg Paradox of D. Bernoulli

e Afair coin is tossed until a head appears
 Gambler receives 2" if the first head appears on trial n

* Probability of this event = probability of tail in first (n-1) trials
and head on trial n, i.e., (1/2)"

Expected value = 2.(1/2)+ 4.(1/2)* + 8.(1/2)3 +... = o

* Are you willing to bet in this way? Is anyone?
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Defining Utility

* Bernoulli went on to argue that people do not act in this way

* The thing to average is the ‘intrinsic worth’ of the monetary
values, not the absolute values

e.g., intrinsic worth of money may increase with money but at
a diminishing rate

* Let us say utility of m is log,,m, then expected value is,
log;,2.(1/2) + log,;,4.(1/2)° + log,,8.(1/2)3 +... = b <
Monetary fair price of the gamble is a where log,,a = b.



Some Critiques of Bernoulli’ s Formulation

von Neumann and Morgenstern (vNM), who ‘started’ game
theory, raised the following questions:

* The assignment of utility to money is arbitrary and ad hoc

— There are an infinity of functions that capture ‘diminishing
rate’ , how should we choose?

— The association may vary from person to person

 Why is the definition of the decision based upon expected
value of this notion of utility?
— Is this actually descriptive of a single gambler, in “one-shot” choice?

8/2/19
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von Neumann & Morgenstern Formulation

* If apersonis able to express preferences between every
possible pair of gambles

where gambles are taken over some basic set of alternatives

* Then one can introduce utility associations to the basic
alternatives in such a manner that

* If the person is guided solely by the utility expected value, he
is acting in accord with his true tastes.

— provided his tastes are consistent in some way
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Constructing Utility Functions

* Suppose we know the following preference order:
— A<b~c<d<e

* The following are utility functions that capture this:
U 0 1/2 1/2 3/4 1
Vv -1 1 1 2 3

W -8 0 0 1 8

— So, in situations like St Petersburg paradox, the revealed preference of
any realistic player may differ from the case of infinite expected value

— Satisfaction at some large value, risk tolerance, time preference, etc.
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Certainty Equivalents and Indifference

* The previous statement applies equally well to certain events
and gambles or lotteries

* So, even attitudes regarding tradeoffs between the two ought
to be captured

e Basic issue —how to compare?

* |magine the following choice (A >B > C pref.) : (a) you get B
for certain, (b) you get A with probability p and C otherwise

 Ifpisnear 1, option b is better; if p is near 0, then option a:
there is a single point where we switch

* Indifference is described as something like

(2/3) (1) +(1-2/3) (0) = 2/3

A C B
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Caveats

As before, we need to remember that the utility values should
not be mis-interpreted

The number 2/3 is determines by choices among risky
alternatives and reflect attitude to ‘gambling’

For instance, imagine a subject who would be indifferent to
paying S9 and a 50-50 chance of paying $10 or nothing;

This suggests utilities for SO, -$9, -S10 are 1, %, 0.

However, we can’ t say it is just as enjoyable for him to go
from -$10 to -S9 as it is to go from -$9 to SO!

Subject’ s preferences among alternatives or lotteries come
prior to numerical characterization of them



Axiomatic Treatment of Utility

vNM and others formalize the above to define axioms for utility:

1) Any two alternatives shall be comparable, i.e., given any two,
subject will prefer one over the other of be indifferent

2) Both preference and indifference relations for lotteries are
transitive

3) Incase a lottery has as one of its alternatives another lottery,

then the first lottery is decomposable into the more basic
alternatives through the use of the probability calculus

4) If two lotteries are indifferent to the subject then they are
interchangeable as alternatives in any compound lottery



Axiomatic Treatment of Utility, contd.

vNM and others formalize the above to define axioms for utility:

5) If two lotteries involve the same two alternatives, then the
one in which the more preferred alternative has a higher
probability of occurring is itself preferred

6) If Ais preferred to B and B to C, then there exists a lottery
involving A and C (with appropriate probabilities) which is
indifferent to B
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Decision Making under Uncertainty

A choice must be made from among a setof acts, A4,, ..., A,

The relative desirability of these acts depends on which state
of nature prevails, eithers,, ..., s

n.

As decision maker we know that one of several things is true
and this influences our choice but we do not have a
probabilistic characterization of these alternatives

Savage’s omelet problem: Your friend has broken 5 good eggs
into a bowl when you come in to volunteer and finish the
omelet. A sixth egg lies unbroken (you must use it or waste it
altogether). Your three acts: break it into bowl, break it into
saucer — inspect and pour into bowl, throw it uninspected



Decision Making under Uncertainty

Table 1. Savage's example illustrating acts, states, and consequences

Act

State

Good

Rotten

Break into bowl
Break into saucer

Throw away

six-egg omelet

six-egg omelet, and a
saucer to wash
five-egg omelet, and
one sood egg destroyed

no omelet, and five good
eggs destroyed

five-egg omelet, and a
saucer to wash

five-egg omelet

* To each outcome, we could assign a utility and maximize it

 What do we know about the state of nature?
— We may act as though there is one true state and we just don’ t know

it

— If we assume a probability over s, this is decision under risk

 What criteria do we have for a decision problem under
uncertainty (d.p.u.u.)?

8/2/19
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Some Criteria for d.p.u.u.

Maximin criterion: To each act, assign its security level as an index.

Index of A, is the minimum of the utilities u,;, ..., u;

in

Choose the act whose associated index is maximum.

sl s2
Al 0 1
A2 1 0

What is the security level for each act?

What happens if we allow for mixed strategies (i.e., akin to a
compound lottery, e.g., p = 0.5 for al and p = 0.5 for a2) ?

Interpretation as game against nature: best response against
nature’ s minimax strategy (least favourable a priori strategy)

8/2/19
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Point to Ponder about Maximin

* |s nature a conscious adversary?!
* Consider:

sl s2
Al 0 100
A2 1 1

 What are the safety values for the actions?
— If mixed strategies are allowed?

* What if 100 went up to 10° and 1 came down to 0.00017?
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Some Criteria for d.p.u.u.

* Minimax risk criterion (Savage): Consider a setup as follows:

sl s2
Al 0 100
A2 1 1

If s1 is the true state, choosing A2 poses no ‘risk’ whereas if s2 is
the true state then considerable ‘risk’ in A2.

Savage’ s procedure: (i) Create new risk payoffs which are amounts
to be added to utility to match maximum column utility, (ii) Choose
act which minimizes maximum risk index
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* Transform Utility Payoff to Risk Payoff:

=

Al
A2

* Take the u; and define r; so that it is the amount that has to
be added to u; to equal maximum utility payoff in column j.

e Critique (due to Chernoff):

Minimax Risk Criterion

sl

s2

0

100

1

1

Al
A2

sl s2
1 0
0 99

— “Regret” may not be measured by utility difference

— Different states of nature may not be traded off properly

— Taking away an irrelevant (obviously bad) action may change optimal

decision!

8/2/19
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More Criteria for d.p.u.u.

* Pessimism-optimism index criterion of Hurwicz:

Let m, and M, be minimum and maximum utility. Assume a
fixed pessimism-optimism index, o.. To each act, associate an
a-index am, + (1 —a) M..

Of two acts, the one with higher a-index is preferred.

« “Principle of insufficient reason”: If one is completely
ignorant, one should act as though all states are equally likely;
so choice should be based on a utility index which is the
average of utility for all possible states for any act

What is the effect of the way we enumerate possible states

of nature?
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Use of Bayesian Principles for Decisions:
Simple Example
Bob observes the weather forecast before
deciding whether to carry an umbrella to work.

Bob wishes to stay dry, but carrying an umbrella
around is annoying.

Forecast
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Setup of Decision Theory

Set A of actions
— Umbrella={true, false}

Set E of (unobserved) events
— Weather={rain, sun}
Set O of observations

— Forecast={rain, sun}

Probability distribution over
— events P(E)
— observations given events
P(O [ E)
Utility function from actions
and events to real numbers.

Weather
sun 0.7
rain 0.3
Forecast
Weather sun rain
sun 0.6 0.4
rain 0.4 0.6
Weather Umbrella Utility
sun TRUE -10
sun FALSE 100
rain TRUE 100

rain

FALSE -10
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Choosing the Best Action

Let U%(Bob | e) be Bob’s reward for taking action
a € A after event e € E has occurred.

The expected utility for Bob after observing o € O
18
EU%Bob | 0) = Y~ P(e]| o) - U*Bob | ¢)
ecE

Optimal behavior — Given observation o choose the
action that leads to maximal expected utility.

a* = argmax,c A FU%(Bob | o)
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Computing an Optimal Strategy for Bob

* A strategy for Bob must specify whether to take an
umbrella for any possible value of the forecast.

« Suppose forecast predicts sun. What is Bob’ s
expected utility for taking an umbrella ?
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Computing Expected Utility for Bob for
taking Umbrella

EU°M(Bob | F = sun) =P(W = sun | F = sun) - U"M(Bob | W = sun)+
P(W = rain | F = sun) - U"M(Bob | W = rain)

Weather Umbrella Utility
sun TRUE -10
sun FALSE 100
rain TRUE 100
rain FALSE -10
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Marginal probability
P(F = sun) =P(F = sun | W = sun) - P(W = sun)+
P(F = sun | W = rain) - P(W = rain)
=0.6-0.7+0.4-0.3 =0.54

PW =sun | F = sun) =

Bayes Rule
P(F = sun | W = sun) - P(W = sun)
P(F = sun)
0.6 -0.7
= = 0.77

0.54
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Computing Expected Cost

EUM(Bob | F = sun) =P(W = sun | F = sun) - U"M(Bob | W = sun)+
P(W = rain | F = sun) - U"M(Bob | W = rain)
=0.77 - (—10) +0.23 - 100 = 15.3

We now compute the expected utility for Bob for the case
where Bob does not take an umbrella.

EUY™(Bob | F = sun) =P(W = sun | F = sun) - U"™(Bob | W = sun)+

P(W = rain | F = sun) - UY™(Bob | W = rain)
=0.77 - 100 + 0.23 - (—10) = 74.7
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Computing Bob’ s Best Action

(15.3) (747
EU"M(Bob | F = sun) < EUM(Bob | F = sun)

If the forecast predicts sun, then Bob should not take the
umbrella
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Computing Bob’ s Best Action

We now compute Bob’ s decision for the case where

the forecast predicts rain. We have that
(34) __ (56)
EU"M(Bob | F = rain) < EU"M(Bob | F = rain)

We get the following strategy for Bob

Forecast

ram sun

Umbrella FALSE FALSE
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Making Sequential Decisions

The newspaper forecast is more reliable, but costs
money, decreasing Bob’ s utility by 10 units. There
are now two decisions:

— Buying a newspaper
— Carrying an umbrella

Weather NP Umbrella Utility

Forecast
. sun TRUE TRUE -20
Weather sun rain “un TRUE FALSE 90
sun 0.8 0.2 rain TRUE TRUE 90
rain 0.2 0.8 rain TRUE | FALSE -20
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Making Sequential Decisions

* Choosing the best action for one decision depends
on the action for the other decision.

* How to weigh the tradeoff between these two
decisions ?
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Marginal probability

P"P(F = sun) =P"P(F = sun | W = sun) - P(W = sun)+
PN°(F = sun | W = rain) - P(W = rain)
=0.8-0.7+0.2-0.3 = 0.62

Bayes Rule
PNP(F = sun | W = sun) - P(W = sun)
NP\ — _ _
P™ (W =sun | F = sun) = PNP(F = sun)
0.8-0.7
~ o6z O

Expected utility
EUNPYM(Bob | F = sun) =P"° (W = sun | F = sun) - U"M(Bob | W = sun)+
PP (W = rain | F = sun) - U"M(Bob | W = rain)
=0.90 - (—20) +0.10 - 90 = (—9)
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PUM

EUNP: UM(Bob | F = sun)

8/2/19

— SU'TL

Decision Trees

Newspaper

/

0. 67 \0 38
sun rain

Umbrella

/\

Umbrella

/\

50.4 19.6

\

0. 51/ \0 46
sun rain

Umbrella

/\

15.3 4.7

Umbrella

VY
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Solving Decision Trees

Newspaper

(0.62*%79)+(0.38%50.4)= t ¢ (0.54%74.7)+(0.46*56)=
68.132 5.55

0.67 0.38 0.54 0.46
SUun rain SUN rawn

Umbrella Umbrella Umbrella Umbrella

T T

50.4 19.6 15.3 74.7
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Slide 3:
https://www.nasa.gov/sites/default/files/thumbnails/image/
pial9808-main tight crop-monday.jpg

Slide 4:
https://www.nasa.gov/sites/default/files/thumbnails/image/
pPial9399 msl mastcammosaiclocations.jpg

Slide 5:

https://ichef.bbci.co.uk/news/624/media/images/55165000/
ipg/ 55165401 exomarssimulation.jpg

Core examples are from F.S. Hillier, G.J. Lieberman,
Operations Research, 1994. (esp. Ch 6 and 12)
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