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Plan	

1.  Ensuring	safety	in	policies	
–  concept	of	adversarial	a7acks	

2.  Differen<al	privacy	and	rela<on	to	es<ma<on	
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SAFE	POLICIES	
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Recap	from	DP:	How	to	go	from	“A	to	B”	

x

⇤
n = argmin fn(s, xn)

f

⇤
n(s) = minimum value of fn(s, xn)

f

⇤
n(s) = fn(s, x

⇤
n)
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Recap	from	Decision	Theore<c	and	
Bayesian	Methods	

•  Ac<on	selec<on	can	be	
based	on	maximizing	
expected	value	in	a	
sequen<al	(and	possibly	
interac<ve)	tree	structured	
choice	problem	

•  In	worked	example,	you	
saw	different	varia<ons	of	
this	approach	
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Other	Modern	Methods	

•  The	basic	dynamic	programming	recursions	and	the	concept	
of	the	value	func<on	is	developed	into	a	variety	of	
approxima<on	methods	within	reinforcement	learning	

•  Modern	Deep	Reinforcement	Learning	methods	represent	
significant	computa<onal	advances	(e.g.,	use	a	neural	
network	to	efficiently	approximate	the	f		for	very	large	state	
spaces	in	a	Deep	Q	network,	DQN)	

•  Likewise	Monte	Carlo	Tree	Search	approaches	represent	
sampling	based	extensions	to	the	basic	decision	tree,	which	
can	scale	up	to	very	large	search	problems	
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Tension	Between	Two	World	Views:	
Methods	like	DQN/MCTS	have	only	been	shown	

to	work	in	some	applica<ons	

[Source: Wired] 

[Source: NDTV] 

[Source: DeepMimic, https://arxiv.org/pdf/1804.02717.pdf ] 

Complex robot behaviours have been 
hard to encode, need control theory 
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How	Robust	is	the	Robot	Behaviour?	
Performance	of	RL	on	Robot	is	VERY	

Sensi<ve	to	Numerous	Parameter	Choices	

[Mahmood et al. IROS 2018, Setting up a Reinforcement Learning Task with a Real world Robot  
https://arxiv.org/pdf/1803.07067.pdf] 
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How	Robust	is	Policy	Learning?	
Not	Very:	Details	in	Code	can	have	Big	Impact	

[Henderson et al. 2017, Deep Reinforcement Learning that Matters, 
https://arxiv.org/abs/1709.06560] 
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Can	we	deploy	these	policies	in	safety-
cri<cal	applica<ons?	

[Source: Justin Kovalsky, Johns Hopkins Clinical Connections] 

[Source: Dan Boman, Scania CV AB] 
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Accidents	with	ML	Systems	

•  Accident:	situa<on	where	a	human	designer	had	in	mind	a	
certain	(perhaps	informally	specified)	objec<ve	or	task,	but	
the	system	that	was	designed	and	deployed	for	that	task	
produced	harmful	and	unexpected	results	

•  How	do	things	go	wrong	in	AI	systems?	
1.  Designer	can	get	the	objec<ve	func<on	wrong	

•  Nega<ve	side	effects	
•  Reward/cost	hacking	

2.  Distribu<onal	shihs	
3.  Too	expensive	to	get	input	(e.g.,	ask	a	human)	
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Using Logical Constraints  
in Policy Synthesis 

System Dynamics 

Run with a horizon N: 

state, control, noise 



What is a Logic? 
Example: Signal Temporal Logic 

Can further derive always ( ⃞ ), unless, next etc. 

The 𝜇 is a signal function, allows us to  
turn real value into boolean:  

The formula is true if sign is positive (𝝅𝜇). Semantics 
given on run 

(Until) (During) 



Controller Synthesis with  
Logical Constraints 

SOLUTION: Use the quantitative semantics to translate into a SAT 
problem. We will omit the details for the purpose of this lecture. For 
closed loop, iterate and expect updated environment in each iteration. 

WHAT DO WE GET: A receding horizon control sequence. Repeat every 
step. Proved to satisfy specification. 



Experiment: Adaptive Cruise Control 

x = (pe,ve,pa,va,sl) 

u = (ae) 

w = (aa,sl) 

State includes longitudinal position and velocity 
of ego and adversary as well as speed limit 
appropriate for ego. 
 
Controller input is acceleration of ego  
 
Environment (w) is acceleration of adversary 
and speed limit at next time. Both from 
prediction and localization 
 
System evolution is straightforward: updated 
distance is function of velocity, updated velocity 
is function of accel, speed limit is set as 
environmental prediction 



Experiment: Adaptive Cruise Control 

Problem: synthesise a controller that will look-ahead and plan a 
series of inputs satisfying formal conditions: 

⃞[0,∞] pa(t) - pe(t) > 𝛿min                          #Ego keeps minimum distance from lead car 
 
 
⃞[0,∞] |va(t) - ve(t)| < 0.1 . va(t)  ⋁ va(t) - sl(t)  > 0    #Ego drives within 10% of lead 
                   car unless lead car breaks the limit 
 
⃞[0,∞] sl(t) - ve(t) ≥ 0                                             #Ego car doesn’t break speed limit 



Experiment: Adaptive Cruise Control 

Position Ego 

Ego Velocity 

Position Adv 

Velocity Adv 

Speed Limit 

Accel Ego 

Accel Adv 

Speed Limit Env 

Interpretation: 
ego car matches 
the speed of the 
car in front until it 
starts breaking 
the speed limit, 
then the ego car 
halts at the limit. 



Experiment: One-way traffic,  
navigating parked cars  

x = (..., le,w,ol,or) 

u = (...,𝛿e) e) 

w = (..., w,ol,ol) 

State extended with lateral position of 
ego, width of the road, and extent of 
obstacles on left and right 
 
Controller input extended with delta in 
lateral position 
 
Environment (w) extended to have 
knowledge of the future width, obstacles 
 
System evolution is as before. Cost 
function penalises unnecessary 
movement from center 

- w 
w 0 

ol 

or 

EGO 



⃞[0,∞] le (t) < w(t) - or(t) – mc     #Ego keeps at least the minimum clearance from 
             obstacles on the right of the single lane road 

 
 
⃞[0,∞] or(t) - w(t) + mc < le (t)    #Ego keeps at least the minimum clearance from 

    obstacles on the left of the single lane road 

Problem: synthesise a controller that will look-ahead and plan a 
series of inputs satisfying formal conditions: 

Experiment: One-way traffic,  
navigating parked cars  



Interpretation:  

Experiment 2: One-way,  
navigating parked cars  

- w 
w 0 

o
l 

or 

EGO 



Interpretation:  
Slow to let the 
oncoming car 
pass and then 
overtake the 
obstacle 
 

Experiment: Normal road,  
obstacle avoidance 

- w 
w 0 

o
l 

EGO 

ADV 



Concept	of	Adversarial	Examples	in	ML:	Small	
Perturba<on	can	Yield	Major	Misclassifica<on	
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Implica<ons	for	Robo<cs	
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[N. Das et al., Shield: Fast, Practical Defense and Vaccination for Deep  
Learning using JPEG Compression, KDD 2018] 



Many	Ways	to	A7ack	ML	Systems	

•  Evasion	a7acks:	malicious	objects	are	deliberately	
transformed	to	evade	detec<on	(detec<on	being	the	
predic<on	that	these	are	malicious)	
§  A7ack	on	the	learned	model	

•  Data	poisoning	a7acks:	the	adversary	introduces	malicious	
modifica<ons	to	the	data	used	for	training	
§  A7ack	on	the	algorithm	

Adversarial	examples	can	be	thought	of	under	the	category	of	
evasion	a7acks	
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How	can	an	a7ack	be	constructed?	
Simple	Example:	Fast	Gradient	Sign	Method	

(FGSM)	
•  Consider	the	classifica<on	problem	defined	by	a	loss	func<on	

L,	which	takes	image	x	to	output	a	label	y,	using	parameters	q	
•  The	gradient	of	this	loss	func<on	is:	

•  Define	a	new	image	as:	

•  This	is	a	simple	“white-box”	a7ack.	To	defend	against	this,	
one	could	generate	many	such	images	at	training	<me	and	
augment	the	datasets	
–  This	wouldn’t	work	for	more	sophis<cated	white	box	
a7acks,	or	for	black	box	a7acks	
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DIFFERENTIAL	PRIVACY	
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What	are	the	Issues?	

Consider	an	applica<on	such	as	traffic	es<ma<on:	
•  Automo<ve	traffic	monitoring	using	probe	vehicles	with	GPS	

receivers	promises	significant	improvements	in	cost,	
coverage,	and	accuracy.		

•  They	require	par<cipants	to	reveal	their	posi<ons	to	an	
external	traffic	monitoring	server.		

•  One	solu<on	is	to	use	a	‘Virtual	Trip	Line’,	chosen	loca<ons	
where	vehicles	provide	updates	(avoid	sensi<ve	areas)	

•  Can	s<ll	be	vulnerable	to	inference	a7acks,	e.g.,	through	good	
Kalman	filter	(or	Bayes	filter	of	some	kind)	based	atacks	
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Privacy	for	Loca<on	based	Services	is	
Different	from	Anonymity,	etc.	

•  The	data	collec<on	process	(communica<ons,	third	party	
aggregator)	is	not	the	only	risk	

•  Risks	associated	to	data	collec<on	can	typically	be	addressed	
by	anonymiza<on,	cryptographic	means	and	other	system	
design	tricks.		

•  Useful	system	cannot	avoid	a	fundamental	disclosure	of	
informa<on	(ex:	real-<me	traffic	density	map,	travel	<me	
es<mates,	etc.)	

•  We	need	to	ensure	this	does	not	leak	too	much	informa<on	
about	individuals	

29/03/19	 28	



A	Problem:	Can	we	get	aggregate	sta<s<cs	
without	compromising	individual	privacy?	

29/03/19	 29	[Source: J.L.Ny, Polytechnique Montreal and GERAD] 



Differen<al	Privacy:	Basic	Idea	

•  A	differen<ally	private	mechanism	randomly	perturbs	its	
answer	to	a	query	so	that	the	output	distribu<on	over	
answers	does	not	vary	much	if	any	given	individual	changes	
its	data	(or	even	chooses	not	to	par<cipate)	

•  Hard	to	infer	if	the	specific	data	of	any	individual	was	used	or	
not	to	answer	the	query	
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Where	Informa<on	Leakage	Happens?	
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A	Bit	More	Formally	

•  Adjacent	datasets	differ	by	data	of	a	single	individual	
•  A	mechanism	M	that	acts	on	the	dataset,	is	(ε,δ)-differen<ally	

private	if,	for	all	valid	sets	S	and	nearby	datasets	defined	by	
an	adjacency	rela<on	Adj(d,d’): 

	
•  Typically,	ε is	small	(e.g.,	0.1)	and	δ	is	very	small	(e.g.,	0.01).	
•  If	δ	is	0	then	the	mechanism	is	said	to	be	ε-differen<ally	

private	(ε-DP)
•  Privacy	defini<on	depends	on	adjacency	defini<on:	pair	of	

datasets	we	wish	to	keep	indis<nguishable	
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A	Gaussian	DP	Mechanism	

•  Let	d	be	a	dataset	of	salaries,	di 

•  Let	the	query	q	be	the	average	salary	calcula<on:		
	
•  A	Gaussian	mechanism	as	below	is	(ε,δ)-differen<ally	private:	
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where the Lp-sensitivity of a query is: 



An	Applica<on	to	a	Linear	Dynamic	System	

•  Adj(u,u’)	is	the	rela<on	between	nearby	input	signals	
•  The	query	is	the	ac<on	of	the	dynamics,	G 
•  The	dynamic	system	y = Gu + w	is	ε-differen<ally	private	if	we	

choose	w	to	be	Laplace	white	noise:	

29/03/19	 34	



Discuss…	

How	does	this	help	us	address	the	traffic	es<ma<on	case?	
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