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Plan

1. Ensuring safety in policies
— concept of adversarial attacks

2. Differential privacy and relation to estimation



SAFE POLICIES



Recap from DP: How to go from “A to B”

Simulated drive through a rocky valley on Mars

Rover target point
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%, = argmin fy(s, o)

= minimum value of f, (s, z,)

29/03/19



Recap from Decision Theoretic and
Bayesian Methods

* Action selection can be
based on maximizing
expected value in a
sequential (and possibly
interactive) tree structured
choice problem

* In worked example, you
saw different variations of
this approach
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Other Modern Methods

* The basic dynamic programming recursions and the concept
of the value function is developed into a variety of
approximation methods within reinforcement learning

* Modern Deep Reinforcement Learning methods represent
significant computational advances (e.g., use a neural
network to efficiently approximate the f for very large state
spaces in a Deep Q network, DQN)

* Likewise Monte Carlo Tree Search approaches represent
sampling based extensions to the basic decision tree, which
can scale up to very large search problems



Tension Between Two World Views:
Methods like DON/MCTS have only been shown
to work in some applications

[Source: Wired]

Complex robot behaviours have been
hard to encode, need control theory

i’} e

[Source: NDTV]
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[Source: DeepMimic, https://arxiv.org/pdf/1804.02717 .pdf ]
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How Robust is the Robot Behaviour?
Performance of RL on Robot is VERY
Sensitive to Numerous Parameter Choices

a) Reliability of experiments b) Different sources of time delay c¢) Different action cycle times
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[Mahmood et al. IROS 2018, Setting up a Reinforcement Learning Task with a Real world Robot
https://arxiv.org/pdf/1803.07067.pdf]
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How Robust is Policy Learning?
Not Very: Details in Code can have Big Impact
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[Henderson et al. 2017, Deep Reinforcement Learning that Matters,
https://arxiv.org/abs/1709.06560]
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Can we deploy these policies in safety-
critical applications?

[Source: Justin Kovalsky,, Johns Hopkins Clinical Connection§
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Accidents with ML Systems

* Accident: situation where a human designer had in mind a

certain (perhaps informally specified) objective or task, but
the system that was designed and deployed for that task
produced harmful and unexpected results

How do things go wrong in Al systems?
1. Designer can get the objective function wrong
* Negative side effects
 Reward/cost hacking
2. Distributional shifts

3. Too expensive to get input (e.g., ask a human)



Using Logical Constraints
in Policy Synthesis

System Dynamics
T(tk+1) = fa(x(t), u(ts), w(ts))

state, control, noise
Run with a horizon N:

{(a:o,uN,wN) = (zouowo)(T1u1w1 ) (ToUgws)...(TNUNWN ),



What is a Logic?
Example: Signal Temporal Logic

(During) (Until)

p =1t | o1 Ao | O @ | 01 Uy @2,

Can further derive always ([_] ), unless, next etc.

The u is a signal function, allows us to e XXUXW — R
turn real value into boolean: )

The formula is true if sign is positive (r#). Semantics
given on run



Controller Synthesis with
Logical Constraints

* %k

Problem 1 (open-loop). Compute u* = ugyuj ... up_, where

u* = argmin J(xo,u,w, p)

ucUN
S.t. g(x())ua W) — ¥

SOLUTION: Use the quantitative semantics to translate into a SAT
problem. We will omit the details for the purpose of this lecture. For
closed loop, iterate and expect updated environment in each iteration.

WHAT DO WE GET: A receding horizon control sequence. Repeat every
step. Proved to satisfy specification.



Experiment: Adaptive Cruise Control

2(trt1) = fa(z(te), u(ty), w(ty))

X = (Pg Ve, P oy, S)

u=(a,)

w = (a,,sl)

State includes longitudinal position and velocity
of ego and adversary as well as speed limit
appropriate for ego.

Controller input is acceleration of ego

Environment (w) is acceleration of adversary
and speed limit at next time. Both from
prediction and localization

System evolution is straightforward: updated
distance is function of velocity, updated velocity
is function of accel, speed limit is set as
environmental prediction



Experiment: Adaptive Cruise Control

Problem: synthesise a controller that will look-ahead and plan a
series of inputs satisfying formal conditions:

0,01 Pa(t) = Po(t) > 6, #Ego keeps minimum distance from lead car

D[O,w] v, (1) - v (D) <0.1.v,(t) Vv, (t)-sl(t) >0 #Ego drives within 10% of lead
car unless lead car breaks the limit

D[O,w] si(t) - v (t) 2 0 #Ego car doesn’t break speed limit



Experiment: Adaptive Cruise Control

Position Ego
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Interpretation:
ego car matches
the speed of the
car in front until it
starts breaking
the speed limit,
then the ego car
halts at the limit.



Experiment. One-way traffic,
navigating parked cars

(thr1) = falz(t), ulte), w(ty))

x=(.,l,wo,0,)  State extended with lateral position of
ego, width of the road, and extent of
obstacles on left and right

u=(..0) Controller input extended with delta in
lateral position

w=(.., ,0,0) Environment (w) extended to have
knowledge of the future width, obstacles

System evolution is as before. Cost
function penalises unnecessary

movement from center
EGO




Experiment. One-way traffic,
navigating parked cars

Problem: synthesise a controller that will look-ahead and plan a
series of inputs satisfying formal conditions:

D[O,w] I, (1) <w(t)-o,(t)—mc #EQgo keeps at least the minimum clearance from
obstacles on the right of the single lane road

D[o,w] o(t) -w(t) + mc <I,(t) #Ego keeps at least the minimum clearance from
obstacles on the left of the single lane road



Experiment 2: One-way,

navigating parked cars

Interpretation:
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Experiment. Normal road,

obstacle avoidance
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Concept of Adversarial Examples in ML: Small
Perturbation can Yield Major Misclassification

Tabby cat
score: 0.99947

Brittany s paniel
score: 0.99863

score: 0.99998

R
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Implications for Robotics

P
Adversarial
Perturbation
classified as misclassified as
Stop Sign Max Speed 100

[N. Das et al., Shield: Fast, Practical Defense and Vaccination for Deep

29/03/19 Learning using JPEG Compression, KDD 2018]
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Many Ways to Attack ML Systems

* Evasion attacks: malicious objects are deliberately
transformed to evade detection (detection being the
prediction that these are malicious)

= Attack on the learned model

* Data poisoning attacks: the adversary introduces malicious
modifications to the data used for training

= Attack on the algorithm

Adversarial examples can be thought of under the category of
evasion attacks
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How can an attack be constructed?
Simple Example: Fast Gradient Sigh Method
(FGSM)

* Consider the classification problem defined by a loss function
L, which takes image x to output a label y, using parameters g

* The gradient of this loss function is: V;EL(H, T, y)

 Define a new image as:

Tady = * + € sign (V. L(6,x.1))

* Thisis a simple “white-box” attack. To defend against this,
one could generate many such images at training time and
augment the datasets

— This wouldn’t work for more sophisticated white box
attacks, or for black box attacks
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DIFFERENTIAL PRIVACY



What are the Issues?

Consider an application such as traffic estimation:

* Automotive traffic monitoring using probe vehicles with GPS
receivers promises significant improvements in cost,
coverage, and accuracy.

* They require participants to reveal their positions to an
external traffic monitoring server.

* One solution is to use a ‘Virtual Trip Line’, chosen locations
where vehicles provide updates (avoid sensitive areas)

e Can still be vulnerable to inference attacks, e.g., through good
Kalman filter (or Bayes filter of some kind) based atacks



Privacy for Location based Services is
Different from Anonymity, etc.

* The data collection process (communications, third party
aggregator) is not the only risk

* Risks associated to data collection can typically be addressed

by anonymization, cryptographic means and other system
design tricks.

* Useful system cannot avoid a fundamental disclosure of
information (ex: real-time traffic density map, travel time
estimates, etc.)

e We need to ensure this does not leak too much information
about individuals
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A Problem: Can we get aggregate statistics
without compromising individual privacy?

St v /
/ /
i

distance from onramp (km)

29/03/19 [Source: J.L.Ny, Polytechnique Montreal and GERAD]
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Differential Privacy: Basic Idea

* Adifferentially private mechanism randomly perturbs its
answer to a query so that the output distribution over
answers does not vary much if any given individual changes
its data (or even chooses not to participate)

* Hard to infer if the specific data of any individual was used or
not to answer the query

analyst
queries [ user

Sanitized answers
(public)

Database

db mgmt system
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Where Information Leakage Happens?

JER[Ca] el

Algorithm
' ratio bounded
Pr[r] /

29/03/19
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A Bit More Formally

Adjacent datasets differ by data of a single individual

A mechanism M that acts on the dataset, is (&,0)-differentially
private if, for all valid sets S and nearby datasets defined by
an adjacency relation Adj(d,d’):

P(M(d) € S) < efP(M(d') € S) + 6

Typically, € is small (e.g., 0.1) and 0 is very small (e.g., 0.01).
If 0is 0 then the mechanism is said to be e—differentially
private (e-DP)

Privacy definition depends on adjacency definition: pair of
datasets we wish to keep indistinguishable



A Gaussian DP Mechanism

* Letd be a dataset of salaries, d,

n

1
* Let the query g be the average salary calculation: 4(d) = - Zdi
=1

* A Gaussian mechanism as below is (g,0)-differentially private:

q(d) T KRg,e AQQ N<O Im)
kse € O(v/In(1/6)/€)

d q(d) +w

_

where the L -sensitivity of a query is:

Apg:=  max lg(d) - q(d')|lp
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An Application to a Linear Dynamic System

* Adj(u,u’) is the relation between nearby input signals
 The query is the action of the dynamics, G

* The dynamic system y = Gu + w is e-differentially private if we
choose w to be Laplace white noise: wy; ~ Lap(A1G/e)

1 — |z
Lap(b) pdf: 57° 2176 std. dev. v/2b ,iid on each component
A,G = max |[|Gu— Gu/||,
Adj(u,u’)
Wi

u € R™ % yr = (Gu)p + wp, € R™
> G —>
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Discuss...

How does this help us address the traffic estimation case?
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