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How to build trust in robots” decisions?
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Question of interpretability of
a sequence of actions

® Necessity to explain executed path behaviour, not just one-

shot decisions
e Explanations might need to be built with query dependent

symbols W
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Prevalence of Al Systems

* Machine learning based decisions are finally finding their way
into deployment

— From ad placement to autonomous navigation

— Promise of autonomous systems that will perceive, learn,
decide, and act on their own.

 Machine learning models can still be opaque, non-intuitive,
and difficult for people to understand (especially lay people)

* The effectiveness of these systems will be limited by the
machine’s inability to explain its thoughts and actions to the
human user



What kinds of questions does the user
need answers to?

Why did you do that?
Why not something else?
When do you succeed?
When do you fail?

When can | trust you?

o Uk wWwN e

How do | correct an error?
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Exercise: Explain this UAV Trace
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Why is this Important?

[U.S. Air Force Photo by Tech Sgt Effrain Lopez, 4th Combat Camera;
via https://www.airforcetimes.com]
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Problems with Complex Specifications
e.g., UAV Flight Plans
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Today

Two Paradigms

. i ?
“EET .58 Why did you do t-hat.
CEED e * Why not something else?
fml VE ¥ Learning This is a cat + When do you succeed?
.EH.! ' Process (p=.93) » When do you fail?
.!gﬂgg e * When can | trust you?
[$oil=f 1] ke s + How do | correct an error?
Training Learned Output User with
Data Function a Task
— * | understand why
‘e | Thisisacat: « | understand why not
New i Lkden .‘k.. | =1t has fur, whiskers, « | know when you'll succeed
Learning P, & e & v | and claws. Lk h 1 fail
Sk Fbe b | ithas this feature: * I know when you'llfal
Process /4- ] b -‘ " ' '- -' : n * | know when to trust you
LITIEINLY « | know why you erred
Training Explainable = Explanation User with
Data Model Interface a Task
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Levels of Explainability and Aspirations

Learning Techniques (today) Explainability
— (notional)
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[D. Gunning, DARPA-BAA-16-53]
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Deep Explanation

Modified deep learning
techniques to learn
explainable features
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Many Approaches to Explanation

Just as there are many different machine learning models to

solve different problems, the desiderata regarding explanations
can also diverse, e.g.,

* Explanation through generation of captions
* Programmatically structured representations

* Local approximations with simpler models

— After looking at an example of each of these, we’ll take a

closer look at one approach, based on the statistical
concept of influence functions

22/03/19
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Explanation through Captions

Western Grebe Description: This is a large bird with a white neck and a black back in the water.

A ) Class Definition: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly,
Image Visual and black back.
® |Description  Explanation Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak
S O O : and red eye.
3 Laysan Albalross 1, . . iotion: This is a large flying bird with black wings and a white belly.
[} # -~  Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
@ ; and white belly.
g, Class Definition Visual Explanation: '!‘his is a Laysan Albatross because this bird has a large wingspan, hooked
g . \ yellow beak, and white belly.
- > Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.
Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
Class Relevance and white belly.
Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white

neck and black back.

[Hendricks, L.A, et al. (2016). Generating Visual Explanations, arXiv:1603.08507v1]
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How to generate captions?
Joint use of multiple models

This is a cardinal because ...
) ‘ ( Recurrent explanation generator model

| it Iél h?s hl a |§h£§£EJﬂ_Jgd .»lblb@liiﬁil

~

[Deep Finegrained Classifier

Compact Bilinear
Feature
v
Predicted

J
CNN: trained to recognize objects v
Language generating RNN: trained to LSTM: Long short term memory,
translate features of the CNN into words and a model that generates sequences
captions.

[Hendricks, L.A, et al. (2016). Generating Visual Explanations, arXiv:1603.08507v1]
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Approach to Training Joint Model

4 Deep Finegrained Classifier )
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Compact Bilinear ]

Cardinal J

Image Category: ]
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Discriminative Loss

Reward
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( Sampled Sentence:
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‘a red bird with black
cheeks.”
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Relevance Loss
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Target Sentence ] ™ _—.-' P(W; Wy 1.4:1,C)
“a bright red bird with an
orange beak.” J
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Programmatically Structured Models

A B

i) primitives D ’11 l T -
procedure GENERATETYPE
m /\ K+ P(k) > Sample number of parts
fori=1..xdo

ii) sub=parts - L l N ,O l n; < P(nq|k) > Sample number of sub=parts
-> forj=1..n,do
\ / J \ / l J' 1' 8¢5 + P(s45]8:¢;—1)) > Sample sub-part sequence
end for
i) parts 3 L L ) R « P(Ri|Sy, ., Si_1) > Sample refation
L end for
) object N N Y N T e iRRS)

return @GENERATETOKEN()) > Return program

template relation: relation: relation:
P attached along attached along attached at start
type level
token level
procedure GENERATETOKEN()
i=1..xd

for (1? K (() )
S P(S™5:) > Add motor variance
V) exempilars
)exemplars 3 ?" 3 ‘?. é Ib PJ L™  P(L™ R, T, - T

> Sample part's start location

(m) (m) g(m) ’ j
Vi) raw data l l l l l l l . I’;Ié for(_ FL™, ™) > Compose a part’s trajectory
31' Alm) o p(Am) > Sample affine transform
3’-— N M| 1 < patmre, am) > Sample image
return (™)

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types w and new token images I™ form =1, ..., M. The
function f (-, -) transforms a subpart sequence and start location into a trajectory.

Lake, B.H., Salakhutdinow, R., & Tennenbaum, J.B. (2015). Human-level concept learning
through probabilistic program induction. Science 350: 1332-1338.
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Are there statistical models that are
“inherently” explainable?
Decision Lists

A decision list for the “Titanic dataset”,
in parantheses is the 95% credible interval for survival probability:

if male and adult then survival probability 21% (19%-23%)
else if 3rd class then survival probability 44% (38%51%)
else if 1st class then survival probability 96% (92%99%)
else survival probability 88% (82%94%)

Bayesian Rule Lists (BRL), produce a posterior distribution over permutations of
if. . . then. .. rules, starting from a large, predetermined set of possible rules.

[B. Letham et al. (2015). Interpretable classifiers using rules and Bayesian analysis:
Building a better stroke prediction model. Annals of Applied Statistics Vol. 9, No. 3, 1350-137]

22/03/19
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More Complex Decision Lists

if hemiplegia and age > 60 then stroke risk 58.9% (53.8%63.8%)

else if cerebrovascular disorder then stroke risk 47.8% (44.8%50.7%)
else if transient ischaemic attack then stroke risk 23.8% (19.5%28.4%)
else if occlusion and stenosis of carotid artery without infarction then
stroke risk 15.8% (12.2%-19.6%)

else if altered state of consciousness and age > 60 then stroke risk
16.0% (12.2%20.2%)

else if age < 70 then stroke risk 4.6% (3.9%5.4%)

else stroke risk 8.7% (7.9%9.6%)

Decision list for determining 1-year stroke risk following diagnosis of atrial
fibrillation from patient medical history. The risk given is the mean of the
posterior consequent distribution, and in parentheses is the 95% credible interval.

22/03/19 17



Power of Bayesian Rule Lists

* BRLs discretize a high Best Testing AUC vs. Model Category for Screening Tasks
dimensional, multivariate
feature space into a series s N
of simple, readily i E
interpretable decision . . B
statements.

Testing AUC

0.7

 Experiments show that
BRLs can have predictive
accuracy on par with the
current top ML algorithms

Model Category

22/03/19



Analyzing Local Model Properties to
Explain Individual Predictions

TN

sneeze | M | Explainer
weight (LIME)

TN

headache
no fatigue no fatigue
| age 4
Model Data and Prediction Explanation Human makes decision

[M.T. Ribeiro et al., Why should | trust you?: Explaining the predictions of any classifier.
In Proc. ACM SIGKDD 2016.]
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LIME: An approach based on approximating
locally with an interpretable model

The black-box model’s complex decision function f (unknown to LIME) is
represented by the blue/pink background, which cannot be approximated

well by a linear model. The bold red cross is the instance being explained.

LIME samples instances, gets predictions using f, and weighs them by the
proximity to the instance being explained (represented here by size).

The dashed line is the learned explanation that is locally (but not globally) faithful.
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Explaining an Image Classification

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

p=0.32 p=0.24 p=0.21

[M.T. Ribeiro et al., Why should | trust you?: Explaining the predictions of any classifier.
In Proc. ACM SIGKDD 2016.]
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Influence Functions in Statistics

The empirical influence function is a measure of the
dependence of the estimator on the value of one of the
points in the sample

Model-free measure: relies on calculating the estimator again
with a different sample

Consider a set of random variables and an iid sample:

b

(1,29, -+ ,xy,) drawn from variables X1 X5--- X,

If 7 is an estimator based on this, then the empirical
influence function is,

EIF; :xz — n.(To(x1, ..., Tim1,2,Tix1, ooy Tn) — Tn(T1, ooy Tic1, Tiy Tit1,y ooy Tn))
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What is an Influence Function Capturing?

* We are replacing the i”* value in the sample by an arbitrary
value and looking at the output of the estimator

* If this data point is not ‘important’ to the output of the
estimator, then the influence function should output a low
value. Why?

EIF; :x = n(Tn(x1,...;xi—1, 2,41, eooy Tn) — Tn(@1, ooy Tim1, Tiy Tig1, ..oy Tn))

* How is this useful for explainability?

22/03/19 23



Using Influence Functions for ML Models

* Address the counterfactual question: what would happen if
we did not have this training point, or if the values of this
training point were changed slightly?

* Easy way is to directly perform sensitivity analysis: perturb
the data point, retrain model, evaluate change.

— Prohibitively expensive for complex models!

* This is where influence functions come in — help evaluate this

sensitivity

22/03/19
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Basic Setup of Influence Function for Black-
box Predictions

Input Space: X, (e.g., images)
Output Space: Y, (e.g., labels)

Training points: (21, ..., 2,), Where z; = (z;,y;) € X x Y

For a point 2z and model parameters #, let the loss be L(z,#) and the empirical risk,

% E?:l L(::z, 9)

The mlnlmlzer of this empirical risk is,

6 = arg ming — Zz_ L(2,0)
Set up empirical risk to be

twice differentiable and convex

22/03/19 25



Effect of a training point on prediction

What if we did not have the training point at all?

Consider training set with the point z removed.

The change in model parameters due to removal of the point is é_z — where,

f_, = arg miny %Zzﬁéz L(z;,0)
Retraining the model to calculate this can be slow!

22/03/19 26



Effect of training point on prediction

Consider the situation where z is upweighted by a small amount e,

f.., = argming S o1 L(2,6) + €eL(2,0)

n
The influence of upweighting > on the parameters Z 18,

T |e=0 = -H; 'V L(2,0)

Iup.param(z) — T de

22/03/19 27



Effect of training point on prediction

. . - . . . . _l
Removing a point z is the same as upweighting by € = —~

So we can linearly approximate parameter change due to removing 2 by computing,

~

0_.— é . _%Iup.param(z)

This does not need the model to be retrained.

22/03/19 28



How does upweighting z change functions
of parameters?

Influence of upweighting 2 on the loss at test point z¢est:

dL €S ’ée z
Iup.loss(zaztest) — (thet ’ )|e=

dee z
Iup.loss( Ztest) — V9L(7te.st (L))T |e_0

Iup.loss( 3 ~test) — vHL('«test 0) IVOL(~a - )

22/03/19
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Example Use of Influence Functions

RBF SVM Test image
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[Koh et al., ICML 2017]

Figure 4. Inception vs. RBF SVM. Bottom left:
~Tupioss(2, Zies) VS. ||z — ziew||2. Green dots are fish and
red dots are dogs. Bottom right: The two most helpful training
images, for each model, on the test. Top right: An image of a
dog in the training set that helped the Inception model correctly
classify the test image as a fish.




