Discrete Mathematics & Mathematical Reasoning
Basic Structures: Sets, Functions, Relations,
Sequences and Sums
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Sets

@ A setis an unordered collection of elements
e A={3,2,1,0} ={1,2,0,3}

@ Membership 3 € A

@ Non-membership 5¢ A

@ Emptyset 0 ={}
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Some important sets (boldface in the textbook)

B = {true, false} Boolean values
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Some important sets (boldface in the textbook)

{true, false} Boolean values
{0,1,2,83,...} Natural numbers
{...,=3, 2,—1,0,1,2,3,...} Integers

B
N
Z
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B = {true, false} Boolean values
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R Real numbers
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B = {true, false} Boolean values
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R Real numbers
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Some important sets (boldface in the textbook)

B = {true, false} Boolean values

N={0,1,2,3,...} Natural numbers
Z=4...,-3,-2,—-1,0,1,2,3,...} Integers

ZT ={ze€Z|z> 0} Positive integers

R Real numbers

RT ={reR|r> 0} Positive real numbers
Q={%|acZ,beZ"} Rational numbers

Qt ={flacZ" beZ"} Positive rational numbers
C Complex numbers
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Sets defined using comprehension

@ S={x | P(x) } where P(x) is a predicate
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Sets defined using comprehension

@ S={x | P(x) } where P(x) is a predicate
e ZT,RT,Q"

@ {x|xeN A 2divides x} = {x € N| 3k(x = 2k)}
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Sets defined using comprehension

@ S={x | P(x) } where P(x) is a predicate

e Zt,RT, Q"

@ {x|xeN A 2divides x} = {x € N| 3k(x = 2k)}
@ Closed intervals [0,1] = {r|0<r <1}

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9)

Today

4/38



Notation

@ AU B union;

AN B intersection
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@ AU B union;
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Notation

@ AU Bunion; AN Bintersection
@ A — Bdifference; A complement
@ If A; are sets for all i € /'then | J;., Aj and [, A; are sets
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@ AU Bunion; AN Bintersection

@ A — Bdifference; A complement

@ If A; are sets for all i € /'then | J;., Aj and [, A; are sets
@ AC Bsubset; A D Bsuperset

@ A = B set equality
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Notation

@ AU Bunion; AN Bintersection

@ A — Bdifference; A complement

@ If A; are sets for all i € /'then | J;., Aj and [, A; are sets
@ AC Bsubset; A D Bsuperset

@ A = B set equality

@ P(A) powerset (set of all subsets of A); also 24

@ |A| cardinality

@ A x B cartesian product (tuple sets)
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Common set identities

e AUA=A AnA=A
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Common set identities

e AUA=A AnA=A
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Common set identities

OAUA:A ANA=A
e A=A

e AUB=BUA AnB=BnNnA
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Common set identities

e AUA=A AnA=A

0 A=A

e AUB=BUA AnB=BnA

@ AU(BNC)=(AuB)N(AUC) An(BUC)=(ANB)U(ANC)
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Common set identities

e AUA=A AnA=A

0 A=A

e AUB=BUA AnB=BnA

@ AU(BNC)=(AuB)N(AUC) An(BUC)=(ANB)U(ANC)
e AnNB=AUB AUB=ANB
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Common set identities

e AUA=A AnA=A

e A=A

e AUB=BUA AnB=BnA

@ AUBNC)=(AUuB)n(AuC) An(BuC)=(AnB)U(AnC)
e AnB=AUB AUB=ANB

e AU(ANB)=A An(AuB)=A
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A proper mathematical definition of set is complicated
(Russell’'s paradox)
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A proper mathematical definition of set is complicated
(Russell’'s paradox)

@ The set of cats is not a cat (is not a member of itself)

@ The set of non-cats (all things that are not cats) is a member of
itself

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 7/38



A proper mathematical definition of set is complicated
(Russell’'s paradox)

@ The set of cats is not a cat (is not a member of itself)

@ The set of non-cats (all things that are not cats) is a member of
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@ Let S be the set of all sets which are not members of themselves
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(Russell’'s paradox)
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@ The set of non-cats (all things that are not cats) is a member of
itself

@ Let S be the set of all sets which are not members of themselves
@ S={x|x¢x} (using naive comprehension)
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A proper mathematical definition of set is complicated
(Russell’'s paradox)

@ The set of cats is not a cat (is not a member of itself)

@ The set of non-cats (all things that are not cats) is a member of
itself

@ Let S be the set of all sets which are not members of themselves
@ S={x|x¢x} (using naive comprehension)

@ Question: is S a member of itself (S € S) ?

@ Sc Sprovidedthat S¢ S; S ¢ Sprovidedthat Se S

@ There cannot be such aset S

@ Modern formulations (such as Zermelo-Fraenkel set theory)
restrict comprehension. (However, it is impossible to prove in ZFC
that ZFC is consistent unless ZFC is inconsistent.)
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Functions

@ Assume A and B are non-empty sets

@ fis a function from Ato B if f assigns to each element of A a
unique element of B

@ Write f(a) = biif f assigns bto a
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Functions

@ Assume A and B are non-empty sets

@ fis a function from Ato B if f assigns to each element of A a
unique element of B

@ Write f(a) = biif f assigns bto a
@ f: A— Bif fis afunction from Ato B
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Functions

@ Assume A and B are non-empty sets

@ fis a function from Ato B if f assigns to each element of A a
unique element of B

@ Write f(a) = biif f assigns bto a
@ f: A— Bif fis a function from Ato B
@ If f: A— B, Ais the domain and B is codomain (range)

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 8/38



Examples

@ f: DMMR_Students — Percentages
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Examples

@ f: DMMR_Students — Percentages
@ 14:A— Awhere x(a) = a
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Examples

o f: DMMR_Students — Percentages
@ 14: A— Awhere 1a(a) = a identity
@ | x| : R — Z: floor largest integer less than or equal to x
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Examples

o f: DMMR_Students — Percentages
@ 14: A— Awhere 1a(a) = a identity

@ | x| : R — Z: floor largest integer less than or equal to x
what are || |[-6.1]
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Examples

o f: DMMR_Students — Percentages
@ 14: A— Awhere 1a(a) = a identity

@ | x| : R — Z: floor largest integer less than or equal to x
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Examples
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@ 14: A— Awhere 1a(a) = a identity
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what are || |[-6.1]

@ [x]: R — Z: ceiling smallest integer greater than or equal to x
whatare [1] [-6.1]

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 9/38



Examples

o f: DMMR_Students — Percentages
@ 14: A— Awhere 1a(a) = a identity

@ | x| : R — Z: floor largest integer less than or equal to x
what are || |[-6.1]

@ [x]: R — Z: ceiling smallest integer greater than or equal to x
whatare [1] [-6.1]

@ | : N — N Factorial
o0l=1 n=1.2.....(n—=1)-nforn>0

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 9/38



One-to-one or injective functions

Definition

f: A— Bisinjective iff Va,c € A (if f(a) = f(c) then a = ¢)
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One-to-one or injective functions

Definition
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@ |s the identity function ¢4 : A — A injective?
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One-to-one or injective functions

Definition

f: A— Bisinjective iff Va,c € A (if f(a) = f(c) then a = ¢)

@ |s the identity function ¢4 : A — A injective?
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One-to-one or injective functions

Definition

f: A— Bisinjective iff Va,c € A (if f(a) = f(c) then a = ¢)

@ |s the identity function ¢4 : A — A injective?
@ Is the function /- : Z* — R* injective?
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One-to-one or injective functions

Definition

f: A— Bisinjective iff Va,c € A (if f(a) = f(c) then a = ¢)

@ |s the identity function ¢4 : A — A injective?
@ Is the function /- : Z* — R* injective?

YES
YES
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One-to-one or injective functions

Definition

f: A— Bisinjective iff Va, c € A (if f(a) = f(c) then a = ¢) J
@ |s the identity function ¢4 : A — A injective? YES
@ Is the function /- : Z* — R* injective? YES

@ Is the squaring function -2 : Z — Z injective?
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One-to-one or injective functions

Definition
f: A— Bisinjective iff Va, c € A (if f(a) = f(c) then a = ¢)

@ |s the identity function ¢4 : A — A injective?
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One-to-one or injective functions

Definition

f: A— Bisinjective iff Va, c € A (if f(a) = f(c) then a = ¢) J
@ |s the identity function ¢4 : A — A injective? YES
@ Is the function /- : Z* — R* injective? YES
@ Is the squaring function -2 : Z — Z injective? NO
@ Is the function | - | : R — R injective? NO

@ Assumem>1.Ismodm:Z — {0,...,m— 1} injective?
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One-to-one or injective functions

Definition
f: A— Bisinjective iff Va, c € A (if f(a) = f(c) then a = ¢)

@ |s the identity function ¢4 : A — A injective?

@ Is the function /- : Z* — R* injective?

@ Is the squaring function -2 : Z — Z injective?

@ Is the function | - | : R — R injective?

@ Assumem>1.lsmodm:Z — {0,...,m— 1} injective?
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Onto or surjective functions

Definition

f: A— Bis surjective iff Yb € B3a € A (f(a) = b)
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Onto or surjective functions

Definition

f: A— Bis surjective iff Yb € B3a € A (f(a) = b)

a
@ |s the identity function ¢4 : A — A surjective?
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Onto or surjective functions

Definition

f: A— Bis surjective iff Yb € B3a € A (f(a) = b)

a
@ |s the identity function ¢4 : A — A surjective?

YES
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Onto or surjective functions
Definition

f: A— Bis surjective iff Yb € B3a € A (f(a) = b)

@ |s the identity function ¢4 : A — A surjective?
@ Is the function /- : Z* — R surjective?

YES
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Onto or surjective functions
Definition

f: A— Bis surjective iff Yb € B3a € A (f(a) = b)

@ |s the identity function ¢4 : A — A surjective?
@ Is the function /- : Z* — R surjective?

YES
NO
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Onto or surjective functions

Definition

f: A— Bis surjective iff Vb € B3a € A (f(a) = b) J
@ |s the identity function ¢4 : A — A surjective? YES
@ Is the function /- : Z* — R* surjective? NO

@ Is the function -2 : Z — Z surjective?
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Onto or surjective functions
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Onto or surjective functions

Definition
f: A— Bis surjective iff Vb € B3a € A (f(a) = b)
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Onto or surjective functions

Definition
f: A— Bis surjective iff Vb € B3a € A (f(a) = b)

@ |s the identity function ¢4 : A — A surjective?
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Onto or surjective functions

Definition

f: A— Bis surjective iff Vb € B3a € A (f(a) = b) J
@ |s the identity function ¢4 : A — A surjective? YES
@ Is the function /- : Z* — R* surjective? NO
@ Is the function -2 : Z — Z surjective? NO
@ Is the function | - | : R — R surjective? NO

@ Assumem>1.lsmodm:Z — {0,...,m— 1} surjective?
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Onto or surjective functions

Definition

f: A— Bis surjective iff Vb € B3a € A (f(a) = b) J
@ |s the identity function ¢4 : A — A surjective? YES
@ Is the function /- : Z* — R* surjective? NO
@ Is the function -2 : Z — Z surjective? NO
@ Is the function | - | : R — R surjective? NO

@ Assumem>1.lsmodm:Z — {0,...,m— 1} surjective? YES
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One-to-one correspondence or bijection

Definition

f: A— Bis a bijection iff it is both injective and surjective
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One-to-one correspondence or bijection
Definition

f: A— Bis a bijection iff it is both injective and surjective

@ |s the identity function ¢4 : A — A a bijection?
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One-to-one correspondence or bijection
Definition

f: A— Bis a bijection iff it is both injective and surjective

@ |s the identity function ¢4 : A — A a bijection?
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One-to-one correspondence or bijection
Definition

f: A— Bis a bijection iff it is both injective and surjective

@ |s the identity function ¢4 : A — A a bijection?
@ Is the function /- : Rt — R a bijection?

YES
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One-to-one correspondence or bijection

Definition

f: A— Bis a bijection iff it is both injective and surjective J
@ |s the identity function ¢4 : A — A a bijection? YES
@ Is the function /- : R* — R* a bijection? YES
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One-to-one correspondence or bijection

Definition

f: A — B is a bijection iff it is both injective and surjective J
@ |s the identity function ¢4 : A — A a bijection? YES
@ Is the function /- : R* — R* a bijection? YES

@ Is the function -2 : R — R a bijection?
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One-to-one correspondence or bijection

Definition
f: A — B is a bijection iff it is both injective and surjective

@ |s the identity function ¢4 : A — A a bijection?
@ Is the function /- : Rt — R a bijection?
@ Is the function -2 : R — R a bijection?
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One-to-one correspondence or bijection

Definition
f: A — B is a bijection iff it is both injective and surjective

@ |s the identity function ¢4 : A — A a bijection?
@ Is the function /- : Rt — R a bijection?

@ Is the function -2 : R — R a bijection?

@ Is the function | - | : R — R a bijection?
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One-to-one correspondence or bijection

Definition
f: A — B is a bijection iff it is both injective and surjective

@ |s the identity function ¢4 : A — A a bijection?
@ Is the function /- : Rt — R a bijection?

@ Is the function -2 : R — R a bijection?

@ Is the function | - | : R — R a bijection?
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Function composition

Definition

(fog)(a) = f(9(a))

Letf: B— Candg: A — B. The composition function fog: A— Cis
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Results about function composition
Theorem

The composition of two functions is a function
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Results about function composition

Theorem

The composition of two functions is a function

Theorem

The composition of two injective functions is an injective function
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Results about function composition

Theorem
The composition of two functions is a function

Theorem

The composition of two injective functions is an injective function

Theorem

The composition of two surjective functions is a surjective function
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Results about function composition

Theorem
The composition of two functions is a function

Theorem
The composition of two injective functions is an injective function

Theorem
The composition of two surjective functions is a surjective function

Corollary
The composition of two bijections is a bijection
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Inverse function

Definition

If f: A— B s a bijection, then the inverse of f, written f~1:B— Ais
f“(b) =aifffla)=»b
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Inverse function

Definition

If f: A— B s a bijection, then the inverse of f, written f~1:B— Ais
f“(b) =aifffla)=»b

Q)
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Inverse function

Definition
If f : A— B s a bijection, then the inverse of f, written f~' : B — Alis
f—‘(b) =aifffla)=»b

Q)

£
RN
\f/
What is the inverse of 14 : A — A?
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Inverse function

Definition
If f : A— B s a bijection, then the inverse of f, written f~' : B — Alis
f—‘(b) =aifffla)=»b

Q)

/f;\
\f/

What is the inverse of 14 : A — A?
What is the inverse of /- : Rt — R*?
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Inverse function

Definition
If f : A— B s a bijection, then the inverse of f, written f~' : B — Alis
f—‘(b) =aifffla)=»b

Q)

/f;\
\f/

What is the inverse of 14 : A — A?
What is the inverse of /- : Rt — R*?
Whatis f~'of? and fo f~1?

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 15/38



Relations

Definition

A binary relation R on sets Aand Bis a subset RC Ax B

Colin Stirling (Informatics)

Discrete Mathematics (Chaps 2 & 9)



Relations

Definition

A binary relation R on sets Aand Bis a subset RC Ax B

@ Ris asetof tuples (a,b) withae Aand be B
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Relations
Definition
A binary relation R on sets Aand Bis a subset RC Ax B J

@ Ris asetof tuples (a,b) withae Aand be B
@ Often we write aR b for (a,b) € R
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Relations
Definition
A binary relation R on sets Aand Bis a subset RC Ax B J

@ Ris asetof tuples (a,b) withae Aand be B
@ Often we write aR b for (a,b) € R
@ A function f is a restricted relation where

Vac Adbe B(((a,b) e f)AVce B((a,c)ef—c=Db))
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Relations
Definition
A binary relation R on sets Aand Bis a subset RC Ax B J

@ Ris asetof tuples (a,b) withae Aand be B
@ Often we write aR b for (a,b) € R
@ A function f is a restricted relation where

Vac Adbe B(((a,b) e f)AVce B((a,c)ef—c=Db))

@ Risarelationon Aif B=A(so, RC Ax A)
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Relations
Definition
A binary relation R on sets Aand Bis a subset RC Ax B J

@ Ris asetof tuples (a,b) withae Aand be B
@ Often we write aR b for (a,b) € R
@ A function f is a restricted relation where

Vac Adbe B(((a,b) e f)AVce B((a,c)ef—c=Db))

@ Risarelationon Aif B=A(so, RC Ax A)
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Relations
Definition
A binary relation R on sets Aand Bis a subset RC Ax B J

@ Ris asetof tuples (a,b) withae Aand be B
@ Often we write aR b for (a,b) € R
@ A function f is a restricted relation where

Vac Adbe B(((a,b) e f)AVce B((a,c)ef—c=Db))

@ Risarelationon Aif B=A(so, RC Ax A)

Definition
Given sets Aq,...,Apasubset R C Ay x --- x Apis an n-ary relation J
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Examples

@ R C A x B, Astudents, B courses; (Colin, DMMR) € R
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Examples

@ R C A x B, Astudents, B courses; (Colin, DMMR) € R
@ Graphs are relations on vertices: covered later in course
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Examples

@ R C A x B, Astudents, B courses; (Colin, DMMR) € R
@ Graphs are relations on vertices: covered later in course
@ Divides |: Z x Zis{(a,b) |a# 0and 3c € Z (b= ac)}
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Examples

@ R C A x B, Astudents, B courses; (Colin, DMMR) € R

@ Graphs are relations on vertices: covered later in course
@ Divides |: Z x Zis{(a,b) |a# 0and 3c € Z (b= ac)}

@ R={(a,b) | mdivides a— b} where m > 1 is an integer
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Examples

@ R C A x B, Astudents, B courses; (Colin, DMMR) € R

@ Graphs are relations on vertices: covered later in course

@ Divides |: Z x Zis{(a,b) |a# 0and 3c € Z (b= ac)}

@ R={(a,b) | mdivides a— b} where m > 1 is an integer Written
as a= b (mod m)

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 17/38



Notation

@ R U S union;

R N S intersection;
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Notation

@ RU Sunion; RN Sintersection;

@ If R; are relations on A x Bfor all i € I'then | J;., R; and (., R; are
relations on A x B
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Notation

@ RU Sunion; RN Sintersection;

@ If R; are relations on A x Bfor all i € I'then | J;., R; and (., R; are
relations on A x B

@ R C Ssubset and R = S equality
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Relation composition

Definition

Let RC Bx Cand S C A x B. The composition relation
(RoS)CAxCis{(a,c)|3b(ab)e SA(b,c)c R}
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Relation composition

Definition
Let RC Bx Cand S C A x B. The composition relation
(RoS)CAx Cis{(a,c)|3b(ab)e SA(b,c) e R}

Closure R is a relation on A:
@ RO is the identity relation (.4)
e A1 =R"'6oR
e R* = UnZO R"
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Relation composition

Definition
Let RC Bx Cand S C A x B. The composition relation
(RoS)CAx Cis{(a,c)|3b(ab)e SA(b,c) e R}

Closure R is a relation on A:
@ RO is the identity relation (.4)
e A1 =R"'6oR
e R* = UnZO R"

Example: reachability in a graph
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Properties of binary relation R on A

o reflexive iff Vx € A(x,x) € R
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Properties of binary relation R on A

o reflexive iff Vx € A(x,x) € R

@ <, =, and | are reflexive, but < is not
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Properties of binary relation R on A

reflexive iff Vx € A(x,x) € R

<, =, and | are reflexive, but < is not

symmetric iff Vx,y € A((x,y) € R — (y,x) € R)
= is symmetric, but <, <, and | are not
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Properties of binary relation R on A

reflexive iff Vx € A(x,x) € R

<, =, and | are reflexive, but < is not

symmetric iff Vx,y € A((x,y) € R — (y,x) € R)

= is symmetric, but <, <, and | are not

antisymmetric iff Vx,y € A(((x,y) e BA(y,X) € R) — x=Y)
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Properties of binary relation R on A

reflexive iff Vx € A(x,x) € R

<, =, and | are reflexive, but < is not

symmetric iff Vx,y € A((x,y) € R — (y,x) € R)

= is symmetric, but <, <, and | are not

antisymmetric iff Vx,y € A(((x,y) e BA(y,X) € R) — x=Y)
<, =, < are antisymmetric but | is not
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Properties of binary relation R on A

reflexive iff Vx € A(x,x) € R

<, =, and | are reflexive, but < is not

symmetric iff Vx,y € A((x,y) € R — (y,x) € R)

= is symmetric, but <, <, and | are not

antisymmetric iff Vx,y € A(((x,y) e BA(y,X) € R) — x=Y)
<, =, < are antisymmetric but | is not

transitive iff vx, y,ze A(((x,¥y) e RA(y,z) € R) — (x,2) € R)
<, =, <, and | are transitive
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Properties of binary relation R on A

reflexive iff Vx € A(x,x) € R

<, =, and | are reflexive, but < is not

symmetric iff Vx,y € A((x,y) € R — (y,x) € R)

= is symmetric, but <, <, and | are not

antisymmetric iff Vx,y € A(((x,y) e BA(y,X) € R) — x=Y)
<, =, < are antisymmetric but | is not

transitive iff vx, y,ze A(((x,¥y) e RA(y,z) € R) — (x,2) € R)
<, =, <, and | are transitive

R* is the reflexive and transitive closure of R
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Equivalence relations

Definition

A relation R on a set A is an equivalence relation iff it is reflexive,
symmetric and transitive
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Equivalence relations

Definition

A relation R on a set A is an equivalence relation iff it is reflexive,
symmetric and transitive

@ Let X* be the set of strings over alphabet X. The relation
{(s,t) € ¥* x * | |s| = |t|} is an equivalence relation
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Equivalence relations

Definition

A relation R on a set A is an equivalence relation iff it is reflexive,
symmetric and transitive

@ Let X* be the set of strings over alphabet X. The relation
{(s,t) € ¥* x * | |s| = |t|} is an equivalence relation
@ | on integers is not an equivalence relation.
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Equivalence relations

Definition

A relation R on a set A is an equivalence relation iff it is reflexive,
symmetric and transitive

@ Let X* be the set of strings over alphabet X. The relation
{(s,t) € ¥* x * | |s| = |t|} is an equivalence relation
@ | on integers is not an equivalence relation.

@ For integer m > 1 the relation = (mod m) is an equivalence
relation on integers

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today
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Equivalence classes
Definition

Let R be an equivalence relation on a set Aand a € A. Let

be the equivalence class of aw.r.t. R

[alr = {s|(as) € R}
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Equivalence classes

Definition
Let R be an equivalence relation on a set Aand a € A. Let

[alr = {s|(as) € R}

be the equivalence class of aw.r.t. R

If b € [a]g then b is called a representative of the equivalence class
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Theorem

Result

Let R be an equivalence relation on A and a, b € A. The following
three statements are equivalent
Q@ aRb

Q [alr = [b]r
Q [alrN[b]r # 0
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Theorem

Result
Let R be an equivalence relation on A and a, b € A. The following
three statements are equivalent
Q@ aRb
Q [alr = [blr
Q [alrN[b]r # 0

Proof in book
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Partitions of a set

Definition
A partition of a set A is a collection of disjoint, nonempty subsets that
have A as their union. In other words, the collection of subsets A; C A
with / € I (where [ is an index set) forms a partition of A iff

Q@ A A0Dforalliecl

Q@ AnA =0foralli#jel

(8] UielAi =A
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Result

Theorem
@ If Ris an equivalence on A, then the equivalence classes of R
form a partition of A

© Conversely, given a partition {A; | i € I} of Athere exists an
equivalence relation R that has exactly the sets A;,i € I, as its

equivalence classes
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Result

Theorem
@ If Ris an equivalence on A, then the equivalence classes of R
form a partition of A

© Conversely, given a partition {A; | i € I} of Athere exists an
equivalence relation R that has exactly the sets A;,i € I, as its

equivalence classes

Proof in book
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Sequences

Sequences are ordered lists of elements

2,3,5,7,11,13,17,19,...or a,b,c,d,...,y,Z
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Sequences

Sequences are ordered lists of elements
2,3,5,7,11,13,17,19,...or a,b,c,d,...,y,Z

Definition

A sequence over a set S is a function f from a subset of the integers

(typically N or ZT) to the set S. If the domain of f is finite then the
sequence is finite
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence

1,1/2,1/3, 1/4,...
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence

1,1/2,1/3, 1/4,...
Assuming a, = f(n), the sequence is also written ay, a, as, ...

or as {an}nez+
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence

1,1/2,1/3, 1/4,...
Assuming a, = f(n), the sequence is also written ay, a, as, ...

or as {an}nez+

9 : N — Nis g(n) = n? defines the sequence

0,1,4,9,...
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence

1,1/2,1/3, 1/4,...
Assuming a, = f(n), the sequence is also written ay, a, as, ...

or as {an}nez+

9 : N — Nis g(n) = n? defines the sequence

0,1,4,9,...

Assuming b, = g(n), also written by, by, by, ... or as {bn}nen

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form

a, ar, ar®, ar’,

n
coar”
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form

a, ar, ar®, ar’,

...,ar”,
@ Example {bp}nen with b, = 6(1/3)"
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form
a, ar, ar?, ar®, ..., ar", ...
@ Example {bp}nen wWith by, = 6(1/3)"

@ An arithmetic progression is a sequence of the form

a, a+d,a+2d,a+3d,...,a+nd, ...
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form

a, ar, ar?, ar®, ..., ar", ...
@ Example {bp}nen wWith by, = 6(1/3)"

@ An arithmetic progression is a sequence of the form

a, a+d,a+2d,a+3d,...,a+nd, ...

@ Example {cy}nen With ¢y =7 —3n
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form
a, ar, ar?, ar®, ..., ar", ...

@ Example {bp}nen wWith by, = 6(1/3)"

@ An arithmetic progression is a sequence of the form

a, a+d,a+2d,a+3d,...,a+nd, ...

@ Example {cy}nen With ¢y =7 —3n

where the initial elements a, the common ratio r and the common
difference d are real numbers
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Recurrence relations

Definition
A recurrence relation for {an} ey is an equation that expresses a,, in
terms of one or more of the elements ag, ay, ..., an_1
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Recurrence relations

Definition
A recurrence relation for {an} ey is an equation that expresses a,, in
terms of one or more of the elements ag, ay, ..., an_1

@ Typically the recurrence relation expresses a,, in terms of just a
fixed number of previous elements (such as a, = g(an_1, an_2))
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Recurrence relations

Definition
A recurrence relation for {an} ey is an equation that expresses a,, in
terms of one or more of the elements ag, ay, ..., an_1

@ Typically the recurrence relation expresses a,, in terms of just a
fixed number of previous elements (such as a, = g(an_1, an_2))

@ The initial conditions specify the first elements of the sequence,
before the recurrence relation applies
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Recurrence relations

Definition
A recurrence relation for {an} ey is an equation that expresses a,, in
terms of one or more of the elements ag, ay, ..., an_1

@ Typically the recurrence relation expresses a,, in terms of just a
fixed number of previous elements (such as a, = g(an_1, an_2))

@ The initial conditions specify the first elements of the sequence,
before the recurrence relation applies

@ A sequence is called a solution of a recurrence relation iff its
terms satisfy the recurrence relation
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Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island
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Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island

It takes 2 months for a pair of rabbits to mature. Once mature each
pair of rabbits produces a new pair of rabbits each month.
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Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island

It takes 2 months for a pair of rabbits to mature. Once mature each
pair of rabbits produces a new pair of rabbits each month.

Find a recurrence relation for number of pairs of rabbits after n € Z*
months assuming no rabbits die

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 30/38



Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island

It takes 2 months for a pair of rabbits to mature. Once mature each
pair of rabbits produces a new pair of rabbits each month.

Find a recurrence relation for number of pairs of rabbits after n € Z*
months assuming no rabbits die

Answer is the Fibonacci sequence

f(1) = 1
f2) = 1
f(n) = f(n-1)+f(n—-2) forn>2
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Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island

It takes 2 months for a pair of rabbits to mature. Once mature each
pair of rabbits produces a new pair of rabbits each month.

Find a recurrence relation for number of pairs of rabbits after n € Z*
months assuming no rabbits die

Answer is the Fibonacci sequence

f(1) = 1
f2) = 1
f(n) = f(n-1)+f(n—-2) forn>2

Yields the sequence 1,1, 2, 3,5, 8,13, ...
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Solving recurrence relations

@ Finding a formula for the n'” term of the sequence generated by a
recurrence relation is called solving the recurrence relation
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Solving recurrence relations

@ Finding a formula for the n'” term of the sequence generated by a
recurrence relation is called solving the recurrence relation

@ Such a formula is called a closed formula
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Solving recurrence relations

@ Finding a formula for the n'” term of the sequence generated by a
recurrence relation is called solving the recurrence relation

@ Such a formula is called a closed formula

@ Various more advanced methods for solving recurrence relations
are covered in Chapter 8 of the book (not part of this course)
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Solving recurrence relations

@ Finding a formula for the n'” term of the sequence generated by a
recurrence relation is called solving the recurrence relation

@ Such a formula is called a closed formula

@ Various more advanced methods for solving recurrence relations
are covered in Chapter 8 of the book (not part of this course)

@ Here we illustrate by example the method of iteration in which we
need to guess the formula
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Solving recurrence relations

@ Finding a formula for the n'” term of the sequence generated by a
recurrence relation is called solving the recurrence relation

@ Such a formula is called a closed formula

@ Various more advanced methods for solving recurrence relations
are covered in Chapter 8 of the book (not part of this course)

@ Here we illustrate by example the method of iteration in which we
need to guess the formula

@ The guess can be proved correct by the method of induction (to
be covered)
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lterative solution - working upwards

Forward substitution
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lterative solution - working upwards

Forward substitution

an=ap_1+3forn>2witha; =2
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lterative solution - working upwards

Forward substitution

an=ap_1+3forn>2witha; =2

a =

2+3
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lterative solution - working upwards

Forward substitution

an=ap_1+3forn>2witha; =2

a

2+3
as

(2+3)+3=2+3-2
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lterative solution - working upwards

Forward substitution

an=ap_1+3forn>2witha; =2

a = 2+3
as (2+3)+3=2+3-2
as (2+2-3)+3=2+3-3
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lterative solution - working upwards

Forward substitution

an=ap_1+3forn>2witha; =2

a = 2+3
as (2+3)+3=2+3-2
a, = (2+2-3)+3=2+3-3

an = ap-1+3=2+3-(n-2))+3=2+3-(n—-1)
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lterative solution - working downward

Backward substitution
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lterative solution - working downward

Backward substitution

an

an=ap_1+3forn>2witha; =2

an_1 + 3
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lterative solution - working downward

Backward substitution

an=ap_1+3forn>2witha; =2
an

an_1 + 3

(an2+3)+3=a,2+3-2
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lterative solution - working downward

Backward substitution

an=ap_1+3forn>2witha; =2
an = ap-1+3

= (an_2+3)+3:a,,_2+3-2
= (ap-3+3)+3-2=a,3+3-3
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lterative solution - working downward

Backward substitution

an=ap_1+3forn>2witha; =2

an = ap-1+3
= (an_2+3)+3:a,,_2+3-2
= (ap-3+3)+3-2=a,3+3-3

— @ 3(N-2)=(a;+3)+3-(N—2)=2+43-(n—1)
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?
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@ Let P, denote amount after n years
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

@ Let P, denote amount after n years
o Pn = Pn_1 + 0.03 Pn_1 = (1.03)Pn_1
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3% per year with interest compounded annually. How much is in
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@ Let P, denote amount after n years
o Pn = Pn_1 + 0.03 Pn_1 = (1.03)Pn_1
@ The initial condition Py = 1000.
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

@ Let P, denote amount after n years

@ P,=P, 1+003P,_1 = (1.03)P,_4

@ The initial condition Py = 1000.

@ PL=(1.03)Py, ..., Ppn=(1.03)P,_1 = (1.03)"Py
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

@ Let P, denote amount after n years

@ P,=P, 1+003P,_1 = (1.03)P,_4

@ The initial condition Py = 1000.

@ PL=(1.03)Py, ..., Ppn=(1.03)P,_1 = (1.03)"Py
@ Py =(1.03)2°1000 = 1,806
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Common sequences

TABLE 1 Some Useful Sequences.
nth Term First 10 Terms

n? 1,4,9, 16, 25, 36, 49, 64, 81, 100, . ..
n3 1,8,27,64, 125,216, 343,512,729, 1000, . ..
n* 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . . .
2" 2,4,8,16,32,64, 128,256,512, 1024, ...
3" 3,9,27,81, 243,729, 2187, 6561, 19683, 59049, ...
n! 1,2, 6,24, 120, 720, 5040, 40320, 362880, 3628800, . ..
fn 1,1,2,3,5,8,13,21,34,55,89, ...

u]
]
I
ul
it
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Summations

Given a sequence {ap}, the sum of terms an, am1,

.,agiS
am+tamy1+...+a
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Summations

Given a sequence {ap}, the sum of terms ap, am. 1,

...,agiS
am+tamy1+...+a

-
L

o Y g

m<j<t
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Summations

Given a sequence {ap}, the sum of terms ap, any1, ..., aris

am+am+1+...+ag

‘
>3 o > g
j=m m<j<¢
The variable j is called the index of summation

More generally for an index set S

>3

jeS
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Useful summation formulas

TABLE 2 Some Useful Summation Formulae.

Sum Closed Form
n
3wk r £0) a'™l—a
Py r—1
n
Z k nn+1)
k=1 2

nn+1)R2n+1)
6

nZ(n + 1)?
4

1—x

1

(1—-x)2
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Products

Given a sequence {an}, the product of terms am, am1,

am‘am+1'...'ag

¢
I[Ia or
j=m

II &
More generally for a finite index set S one writes

, ayis

m<j<t

Ila

jes
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