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Sets

A set is an unordered collection of elements

A = {3,2,1,0} = {1,2,0,3}
Membership 3 ∈ A
Non-membership 5 6∈ A
Emptyset ∅ = { }
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Some important sets (boldface in the textbook)

B = {true, false} Boolean values

N = {0,1,2,3, . . . } Natural numbers
Z = {. . . ,−3,−2,−1,0,1,2,3, . . . } Integers
Z+ = {z ∈ Z | z > 0} Positive integers
R Real numbers
R+ = {r ∈ R | r > 0} Positive real numbers
Q = {a

b |a ∈ Z,b ∈ Z+} Rational numbers
Q+ = {a

b |a ∈ Z+,b ∈ Z+} Positive rational numbers
C Complex numbers
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Sets defined using comprehension

S = {x | P(x) } where P(x) is a predicate

Z+, R+, Q+

{x | x ∈ N ∧ 2 divides x} = {x ∈ N | ∃k(x = 2k)}
Closed intervals [0,1] = {r |0 ≤ r ≤ 1}
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Notation

A ∪ B union; A ∩ B intersection

A− B difference; A complement
If Ai are sets for all i ∈ I then

⋃
i∈I Ai and

⋂
i∈I Ai are sets

A ⊆ B subset; A ⊇ B superset
A = B set equality
P(A) powerset (set of all subsets of A); also 2A

|A| cardinality
A× B cartesian product (tuple sets)
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Common set identities

A ∪ A = A A ∩ A = A

A = A
A ∪ B = B ∪ A A ∩ B = B ∩ A
A ∪ (B ∩C) = (A ∪ B) ∩ (A ∪C) A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C)

A ∩ B = A ∪ B A ∪ B = A ∩ B
A ∪ (A ∩ B) = A A ∩ (A ∪ B) = A
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A proper mathematical definition of set is complicated
(Russell’s paradox)

The set of cats is not a cat (is not a member of itself)
The set of non-cats (all things that are not cats) is a member of
itself
Let S be the set of all sets which are not members of themselves
S = {x | x 6∈ x} (using naive comprehension)
Question: is S a member of itself (S ∈ S) ?
S ∈ S provided that S 6∈ S; S 6∈ S provided that S ∈ S
There cannot be such a set S
Modern formulations (such as Zermelo-Fraenkel set theory)
restrict comprehension. (However, it is impossible to prove in ZFC
that ZFC is consistent unless ZFC is inconsistent.)
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Functions

Assume A and B are non-empty sets

f is a function from A to B if f assigns to each element of A a
unique element of B
Write f (a) = b if f assigns b to a
f : A→ B if f is a function from A to B
If f : A→ B, A is the domain and B is codomain (range)
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Examples

f : DMMR_Students→ Percentages

ιA : A→ A where ιA(a) = a identity
bxc : R→ Z: floor largest integer less than or equal to x
what are b1

2c b−6.1c
dxe : R→ Z: ceiling smallest integer greater than or equal to x
what are d1

2e d−6.1e
! : N→ N Factorial
0! = 1 n! = 1 · 2 · · · · · (n − 1) · n for n > 0
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One-to-one or injective functions

Definition
f : A→ B is injective iff ∀a, c ∈ A (if f (a) = f (c) then a = c)

Is the identity function ιA : A→ A injective? YES
Is the function

√
· : Z+ → R+ injective? YES

Is the squaring function ·2 : Z→ Z injective? NO
Is the function | · | : R→ R injective? NO
Assume m > 1. Is mod m : Z→ {0, . . . ,m − 1} injective? NO
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Onto or surjective functions

Definition
f : A→ B is surjective iff ∀b ∈ B ∃a ∈ A (f (a) = b)
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One-to-one correspondence or bijection

Definition
f : A→ B is a bijection iff it is both injective and surjective

Is the identity function ιA : A→ A a bijection? YES
Is the function

√
· : R+ → R+ a bijection? YES

Is the function ·2 : R→ R a bijection? NO
Is the function | · | : R→ R a bijection? NO
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Function composition

Definition
Let f : B → C and g : A→ B. The composition function f ◦ g : A→ C is
(f ◦ g)(a) = f (g(a))
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Results about function composition

Theorem
The composition of two functions is a function

Theorem
The composition of two injective functions is an injective function

Theorem
The composition of two surjective functions is a surjective function

Corollary
The composition of two bijections is a bijection
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Inverse function

Definition
If f : A→ B is a bijection, then the inverse of f , written f−1 : B → A is
f−1(b) = a iff f (a) = b

P1: 1
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for all x ∈ A. In other words, the identity function ιA is the function that assigns each element
to itself. The function ιA is one-to-one and onto, so it is a bijection. (Note that ι is the Greek
letter iota.) ▲

For future reference, we summarize what needs be to shown to establish whether a function
is one-to-one and whether it is onto. It is instructive to review Examples 8–17 in light of this
summary.

Suppose that f : A → B.

To show that f is injective Show that if f (x) = f (y) for arbitrary x, y ∈ A with x ̸= y,
then x = y.
To show that f is not injective Find particular elements x, y ∈ A such that x ̸= y and
f (x) = f (y).
To show that f is surjective Consider an arbitrary element y ∈ B and find an element x ∈ A
such that f (x) = y.
To show that f is not surjective Find a particular y ∈ B such that f (x) ̸= y for all x ∈ A.

Inverse Functions and Compositions of Functions

Now consider a one-to-one correspondence f from the set A to the set B. Because f is an onto
function, every element of B is the image of some element in A. Furthermore, because f is also
a one-to-one function, every element of B is the image of a unique element of A. Consequently,
we can define a new function from B to A that reverses the correspondence given by f . This
leads to Definition 9.

DEFINITION 9 Let f be a one-to-one correspondence from the set A to the set B. The inverse function of
f is the function that assigns to an element b belonging to B the unique element a in A
such that f (a) = b. The inverse function of f is denoted by f −1. Hence, f −1(b) = a when
f (a) = b.

Remark: Be sure not to confuse the function f −1 with the function 1/f , which is the function
that assigns to each x in the domain the value 1/f (x). Notice that the latter makes sense only
when f (x) is a non-zero real number.

Figure 6 illustrates the concept of an inverse function.
If a function f is not a one-to-one correspondence, we cannot define an inverse function of

f . When f is not a one-to-one correspondence, either it is not one-to-one or it is not onto. If

f

A B

a = f –1(b) b = f (a)f (a)

f –1(b)

f –1

FIGURE 6 The Function f −1 Is the Inverse of Function f .

What is the inverse of ιA : A→ A?

What is the inverse of
√
· : R+ → R+?

What is f−1 ◦ f? and f ◦ f−1?
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leads to Definition 9.

DEFINITION 9 Let f be a one-to-one correspondence from the set A to the set B. The inverse function of
f is the function that assigns to an element b belonging to B the unique element a in A
such that f (a) = b. The inverse function of f is denoted by f −1. Hence, f −1(b) = a when
f (a) = b.

Remark: Be sure not to confuse the function f −1 with the function 1/f , which is the function
that assigns to each x in the domain the value 1/f (x). Notice that the latter makes sense only
when f (x) is a non-zero real number.

Figure 6 illustrates the concept of an inverse function.
If a function f is not a one-to-one correspondence, we cannot define an inverse function of

f . When f is not a one-to-one correspondence, either it is not one-to-one or it is not onto. If
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A B

a = f –1(b) b = f (a)f (a)

f –1(b)

f –1

FIGURE 6 The Function f −1 Is the Inverse of Function f .

What is the inverse of ιA : A→ A?

What is the inverse of
√
· : R+ → R+?

What is f−1 ◦ f? and f ◦ f−1?
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Relations

Definition
A binary relation R on sets A and B is a subset R ⊆ A× B

R is a set of tuples (a,b) with a ∈ A and b ∈ B
Often we write a R b for (a,b) ∈ R
A function f is a restricted relation where

∀a ∈ A ∃b ∈ B (((a,b) ∈ f ) ∧ ∀c ∈ B ((a, c) ∈ f → c = b))

R is a relation on A if B = A (so, R ⊆ A× A)

Definition
Given sets A1, . . . ,An a subset R ⊆ A1 × · · · × An is an n-ary relation
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Examples

R ⊆ A× B, A students, B courses; (Colin, DMMR) ∈ R

Graphs are relations on vertices: covered later in course
Divides | : Z× Z is {(a,b) | a 6= 0 and ∃c ∈ Z (b = ac)}
R = {(a,b) | m divides a− b} where m > 1 is an integer Written
as a ≡ b (mod m)
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Notation

R ∪ S union; R ∩ S intersection;

If Ri are relations on A× B for all i ∈ I then
⋃

i∈I Ri and
⋂

i∈I Ri are
relations on A× B
R ⊆ S subset and R = S equality
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Relation composition

Definition
Let R ⊆ B × C and S ⊆ A× B. The composition relation
(R ◦ S) ⊆ A× C is {(a, c) | ∃b (a,b) ∈ S ∧ (b, c) ∈ R}

Closure R is a relation on A:
R0 is the identity relation (ιA)
Rn+1 = Rn ◦ R
R∗ =

⋃
n≥0 Rn

Example: reachability in a graph
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Properties of binary relation R on A

reflexive iff ∀x ∈ A (x , x) ∈ R

≤, =, and | are reflexive, but < is not
symmetric iff ∀x , y ∈ A ((x , y) ∈ R → (y , x) ∈ R)

= is symmetric, but ≤, <, and | are not
antisymmetric iff ∀x , y ∈ A (((x , y) ∈ R ∧ (y , x) ∈ R) → x = y)

≤, =, < are antisymmetric but | is not
transitive iff ∀x , y , z ∈ A (((x , y) ∈ R ∧ (y , z) ∈ R) → (x , z) ∈ R)

≤, =, <, and | are transitive
R∗ is the reflexive and transitive closure of R
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Equivalence relations

Definition
A relation R on a set A is an equivalence relation iff it is reflexive,
symmetric and transitive

Let Σ∗ be the set of strings over alphabet Σ. The relation
{(s, t) ∈ Σ∗ × Σ∗ | |s| = |t |} is an equivalence relation
| on integers is not an equivalence relation.
For integer m > 1 the relation ≡ (mod m) is an equivalence
relation on integers
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Equivalence classes

Definition
Let R be an equivalence relation on a set A and a ∈ A. Let

[a]R = {s | (a, s) ∈ R}

be the equivalence class of a w.r.t. R

If b ∈ [a]R then b is called a representative of the equivalence class
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Theorem

Result
Let R be an equivalence relation on A and a,b ∈ A. The following
three statements are equivalent

1 aRb
2 [a]R = [b]R
3 [a]R ∩ [b]R 6= ∅

Proof in book
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Partitions of a set

Definition
A partition of a set A is a collection of disjoint, nonempty subsets that
have A as their union. In other words, the collection of subsets Ai ⊆ A
with i ∈ I (where I is an index set) forms a partition of A iff

1 Ai 6= ∅ for all i ∈ I
2 Ai ∩ Aj = ∅ for all i 6= j ∈ I
3

⋃
i∈I Ai = A
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Result

Theorem
1 If R is an equivalence on A, then the equivalence classes of R

form a partition of A
2 Conversely, given a partition {Ai | i ∈ I} of A there exists an

equivalence relation R that has exactly the sets Ai , i ∈ I, as its
equivalence classes

Proof in book
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Sequences

Sequences are ordered lists of elements

2, 3, 5, 7, 11, 13, 17, 19, . . . or a, b, c, d , . . ., y , z

Definition
A sequence over a set S is a function f from a subset of the integers
(typically N or Z+) to the set S. If the domain of f is finite then the
sequence is finite
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Examples

f : Z+ → Q is f (n) = 1/n defines the sequence

1, 1/2, 1/3, 1/4, . . .

Assuming an = f (n), the sequence is also written a1, a2, a3, . . .

or as {an}n∈Z+

g : N→ N is g(n) = n2 defines the sequence

0, 1, 4, 9, . . .

Assuming bn = g(n), also written b0, b1, b2, . . . or as {bn}n∈N
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Geometric and arithmetic progressions

A geometric progression is a sequence of the form

a, ar , ar2, ar3, . . . , arn, . . .

Example {bn}n∈N with bn = 6(1/3)n

An arithmetic progression is a sequence of the form

a, a + d , a + 2d , a + 3d , . . . , a + nd , . . .

Example {cn}n∈N with cn = 7− 3n
where the initial elements a, the common ratio r and the common
difference d are real numbers
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Recurrence relations

Definition
A recurrence relation for {an}n∈N is an equation that expresses an in
terms of one or more of the elements a0, a1, . . . , an−1

Typically the recurrence relation expresses an in terms of just a
fixed number of previous elements (such as an = g(an−1,an−2))
The initial conditions specify the first elements of the sequence,
before the recurrence relation applies
A sequence is called a solution of a recurrence relation iff its
terms satisfy the recurrence relation
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Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island

It takes 2 months for a pair of rabbits to mature. Once mature each
pair of rabbits produces a new pair of rabbits each month.

Find a recurrence relation for number of pairs of rabbits after n ∈ Z+

months assuming no rabbits die

Answer is the Fibonacci sequence
f (1) = 1
f (2) = 1
f (n) = f (n − 1) + f (n − 2) for n > 2

Yields the sequence 1, 1, 2, 3, 5, 8, 13, . . .

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 30 / 38



Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island

It takes 2 months for a pair of rabbits to mature. Once mature each
pair of rabbits produces a new pair of rabbits each month.

Find a recurrence relation for number of pairs of rabbits after n ∈ Z+

months assuming no rabbits die

Answer is the Fibonacci sequence
f (1) = 1
f (2) = 1
f (n) = f (n − 1) + f (n − 2) for n > 2

Yields the sequence 1, 1, 2, 3, 5, 8, 13, . . .

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 30 / 38



Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island

It takes 2 months for a pair of rabbits to mature. Once mature each
pair of rabbits produces a new pair of rabbits each month.

Find a recurrence relation for number of pairs of rabbits after n ∈ Z+

months assuming no rabbits die

Answer is the Fibonacci sequence
f (1) = 1
f (2) = 1
f (n) = f (n − 1) + f (n − 2) for n > 2

Yields the sequence 1, 1, 2, 3, 5, 8, 13, . . .

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 30 / 38



Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island

It takes 2 months for a pair of rabbits to mature. Once mature each
pair of rabbits produces a new pair of rabbits each month.

Find a recurrence relation for number of pairs of rabbits after n ∈ Z+

months assuming no rabbits die

Answer is the Fibonacci sequence
f (1) = 1
f (2) = 1
f (n) = f (n − 1) + f (n − 2) for n > 2

Yields the sequence 1, 1, 2, 3, 5, 8, 13, . . .

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 30 / 38



Rabbits and Fibonacci sequence

A pair of rabbits is placed on an island

It takes 2 months for a pair of rabbits to mature. Once mature each
pair of rabbits produces a new pair of rabbits each month.

Find a recurrence relation for number of pairs of rabbits after n ∈ Z+

months assuming no rabbits die

Answer is the Fibonacci sequence
f (1) = 1
f (2) = 1
f (n) = f (n − 1) + f (n − 2) for n > 2

Yields the sequence 1, 1, 2, 3, 5, 8, 13, . . .

Colin Stirling (Informatics) Discrete Mathematics (Chaps 2 & 9) Today 30 / 38



Solving recurrence relations

Finding a formula for the nth term of the sequence generated by a
recurrence relation is called solving the recurrence relation

Such a formula is called a closed formula

Various more advanced methods for solving recurrence relations
are covered in Chapter 8 of the book (not part of this course)

Here we illustrate by example the method of iteration in which we
need to guess the formula

The guess can be proved correct by the method of induction (to
be covered)
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Iterative solution - working upwards

Forward substitution

an = an−1 + 3 for n ≥ 2 with a1 = 2

a2 = 2 + 3
a3 = (2 + 3) + 3 = 2 + 3 · 2
a4 = (2 + 2 · 3) + 3 = 2 + 3 · 3

...
an = an−1 + 3 = (2 + 3 · (n − 2)) + 3 = 2 + 3 · (n − 1)
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Iterative solution - working downward

Backward substitution

an = an−1 + 3 for n ≥ 2 with a1 = 2

an = an−1 + 3
= (an−2 + 3) + 3 = an−2 + 3 · 2
= (an−3 + 3) + 3 · 2 = an−3 + 3 · 3

...
= a2 + 3(n − 2) = (a1 + 3) + 3 · (n − 2) = 2 + 3 · (n − 1)
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Compound interest

Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

Let Pn denote amount after n years
Pn = Pn−1 + 0.03 Pn−1 = (1.03)Pn−1

The initial condition P0 = 1000.
P1 = (1.03) P0, . . ., Pn = (1.03)Pn−1 = (1.03)nP0

P20 = (1.03)20 1000 = 1,806
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Common sequences

P1: 1

CH02 Rosen-2311T rosen.cls July 9, 2012 14:50

162 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 1 Some Useful Sequences.

nth Term First 10 Terms

n2 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

n3 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, . . .

n4 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . . .

2n 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

3n 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, . . .

n! 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, . . .

fn 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Solution: To attack this problem, we begin by looking at the difference of consecutive terms,
but we do not see a pattern. When we form the ratio of consecutive terms to see whether each
term is a multiple of the previous term, we find that this ratio, although not a constant, is close
to 3. So it is reasonable to suspect that the terms of this sequence are generated by a formula
involving 3n. Comparing these terms with the corresponding terms of the sequence {3n}, we
notice that the nth term is 2 less than the corresponding power of 3. We see that an = 3n − 2
for 1 ≤ n ≤ 10 and conjecture that this formula holds for all n. ▲

We will see throughout this text that integer sequences appear in a wide range of contexts in
discrete mathematics. Sequences we have encountered or will encounter include the sequence
of prime numbers (Chapter 4), the number of ways to order n discrete objects (Chapter 6), the
number of moves required to solve the famous Tower of Hanoi puzzle with n disks (Chapter 8),
and the number of rabbits on an island after n months (Chapter 8).

Check out the puzzles at
the OEIS site. Integer sequences appear in an amazingly wide range of subject areas besides discrete

mathematics, including biology, engineering, chemistry, and physics, as well as in puzzles. An
amazing database of over 200,000 different integer sequences can be found in the On-Line
Encyclopedia of Integer Sequences (OEIS). This database was originated by Neil Sloane in the
1960s. The last printed version of this database was published in 1995 ([SIPI95]); the current
encyclopedia would occupy more than 750 volumes of the size of the 1995 book with more than
10,000 new submissions a year. There is also a program accessible via the Web that you can use
to find sequences from the encyclopedia that match initial terms you provide.

Summations

Next, we consider the addition of the terms of a sequence. For this we introduce summation
notation. We begin by describing the notation used to express the sum of the terms

am, am+1, . . . , an

from the sequence {an}. We use the notation

n∑

j= m

aj ,
∑n

j= m aj , or
∑

m≤j≤n aj

(read as the sum from j = m to j = n of aj ) to represent

am + am+1 + · · · + an.

Here, the variable j is called the index of summation, and the choice of the letter j as the
variable is arbitrary; that is, we could have used any other letter, such as i or k. Or, in notation,

n∑

j=m

aj =
n∑

i=m

ai =
n∑

k=m

ak.
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Summations

Given a sequence {an}, the sum of terms am, am+1, . . . , a` is

am + am+1 + . . .+ a`

∑̀
j=m

aj or
∑

m≤j≤`
aj

The variable j is called the index of summation

More generally for an index set S∑
j∈S

aj
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Useful summation formulas

P1: 1

CH02 Rosen-2311T rosen.cls July 9, 2012 14:50

166 2 / Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

TABLE 2 Some Useful Summation Formulae.

Sum Closed Form

n∑

k = 0

ark (r ̸= 0) arn+1 − a
r − 1

, r ̸= 1

n∑

k = 1

k
n(n + 1)

2

n∑

k = 1

k2 n(n + 1)(2n + 1)

6

n∑

k = 1

k3 n2(n + 1)2

4

∞∑

k = 0

xk, |x| < 1
1

1 − x

∞∑

k = 1

kxk−1, |x| < 1
1

(1 − x)2

EXAMPLE 23 Find
∑100

k = 50k
2.

Solution: First note that because
∑100

k = 1k
2 = ∑49

k = 1k
2 +∑100

k = 50k
2, we have

100∑

k = 50

k2 =
100∑

k = 1

k2 −
49∑

k = 1

k2.

Using the formula
∑n

k = 1k
2 = n(n + 1)(2n + 1)/6 from Table 2 (and proved in Exercise 38),

we see that

100∑

k = 50

k2 = 100 · 101 · 201
6

− 49 · 50 · 99
6

= 338,350 − 40,425 = 297,925. ▲

SOME INFINITE SERIES Although most of the summations in this book are finite sums,
infinite series are important in some parts of discrete mathematics. Infinite series are usually
studied in a course in calculus and even the definition of these series requires the use of calculus,
but sometimes they arise in discrete mathematics, because discrete mathematics deals with infi-
nite collections of discrete elements. In particular, in our future studies in discrete mathematics,
we will find the closed forms for the infinite series in Examples 24 and 25 to be quite useful.

EXAMPLE 24 (Requires calculus) Let x be a real number with |x| < 1. Find
∑∞

n = 0 xn.

Solution: By Theorem 1 with a = 1 and r = x we see that
∑k

n = 0 xn = xk+1 − 1
x − 1

. Because

|x| < 1, xk+1 approaches 0 as k approaches infinity. It follows that

∞∑

n = 0

xn = lim
k→∞

xk+1 − 1
x − 1

= 0 − 1
x − 1

= 1
1 − x

. ▲

We can produce new summation formulae by differentiating or integrating existing formulae.
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Products

Given a sequence {an}, the product of terms am, am+1, . . . , a` is

am · am+1 · . . . · a`

∏̀
j=m

aj or
∏

m≤j≤`
aj

More generally for a finite index set S one writes∏
j∈S

aj
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