Discrete Mathematics & Mathematical Reasoning
Multiplicative Inverses and Some Cryptography

Colin Stirling
Informatics
Multiplicative inverses

- Every real number x, except $x = 0$, has a multiplicative inverse $y = \frac{1}{x}$; so $xy = 1$

Similarly for $x \mod m$, except $x = 0$, we wish to find $y \mod m$ such that $xy \equiv 1 \pmod{m}$

$x = 8$ and $m = 15$. Then $x^2 = 16 \equiv 1 \pmod{15}$, so 2 is a multiplicative inverse of 8 $(\mod 15)$

$x = 12$ and $m = 15$. The sequence $\{x^a \mod m \mid a = 0, 1, 2, \ldots\}$ is periodic, and takes on the values $\{0, 12, 9, 6, 3\}$. So, 12 has no multiplicative inverse $(\mod 15)$.

Notice $\gcd(8, 15) = 1$ whereas $\gcd(12, 15) = 3$.
Multiplicative inverses

- Every real number x, except $x = 0$, has a multiplicative inverse $y = \frac{1}{x}$; so $xy = 1$

- Similarly for $x \mod m$, except $x = 0$, we wish to find $y \mod m$ such that $xy \equiv 1 \pmod{m}$

$\begin{align*}
\text{x = 8 and } m = 15. \text{ Then } x^2 = 16 \equiv 1 \pmod{15}, \text{ so 2 is a multiplicative inverse of 8 } \pmod{15}. \\
\text{x = 12 and } m = 15. \text{ The sequence } \{x^a \pmod{m} \mid a = 0, 1, 2, \ldots\} \text{ is periodic, and takes on the values } \{0, 12, 9, 6, 3\}. \text{ So, 12 has no multiplicative inverse } \pmod{15}.
\end{align*}$

Notice $\gcd(8, 15) = 1$ whereas $\gcd(12, 15) = 3$.

Colin Stirling (Informatics)
Multiplicative inverses

- Every real number x, except $x = 0$, has a multiplicative inverse $y = \frac{1}{x}$; so $xy = 1$

- Similarly for $x \mod m$, except $x = 0$, we wish to find $y \mod m$ such that $xy \equiv 1 \pmod{m}$

- $x = 8$ and $m = 15$. Then $x \cdot 2 = 16 \equiv 1 \pmod{15}$, so 2 is a multiplicative inverse of 8 (mod 15)
Multiplicative inverses

- Every real number x, except $x = 0$, has a multiplicative inverse $y = \frac{1}{x}$; so $xy = 1$

- Similarly for $x \mod m$, except $x = 0$, we wish to find $y \mod m$ such that $xy \equiv 1 \pmod{m}$

- $x = 8$ and $m = 15$. Then $x \cdot 2 = 16 \equiv 1 \pmod{15}$, so 2 is a multiplicative inverse of 8 (mod 15)

- $x = 12$ and $m = 15$
Multiplicative inverses

Every real number x, except $x = 0$, has a multiplicative inverse $y = \frac{1}{x}$; so $xy = 1$

Similarly for $x \mod m$, except $x = 0$, we wish to find $y \mod m$ such that $xy \equiv 1 \pmod{m}$

$x = 8$ and $m = 15$. Then $x \cdot 2 = 16 \equiv 1 \pmod{15}$, so 2 is a multiplicative inverse of 8 (mod 15)

$x = 12$ and $m = 15$

The sequence $\{xa \pmod{m} | a = 0, 1, 2, \ldots\}$ is periodic, and takes on the values $\{0, 12, 9, 6, 3\}$. So, 12 has no multiplicative inverse mod 15
Multiplicative inverses

- Every real number x, except $x = 0$, has a multiplicative inverse $y = \frac{1}{x}$; so $xy = 1$

- Similarly for $x \mod m$, except $x = 0$, we wish to find $y \mod m$ such that $xy \equiv 1 \pmod{m}$

- $x = 8$ and $m = 15$. Then $x \cdot 2 = 16 \equiv 1 \pmod{15}$, so 2 is a multiplicative inverse of 8 (mod 15)

- $x = 12$ and $m = 15$
 The sequence $\{xa \pmod{m} \mid a = 0, 1, 2, \ldots\}$ is periodic, and takes on the values $\{0, 12, 9, 6, 3\}$. So, 12 has no multiplicative inverse mod 15

- Notice $\gcd(8, 15) = 1$ whereas $\gcd(12, 15) = 3$
Theorem

If \(m, x \) are positive integers and \(\gcd(m, x) = 1 \) then \(x \) has a multiplicative inverse mod \(m \) (and it is unique mod \(m \)).

Proof.
By Bézout's theorem there are \(s \) and \(t \) such that

\[sm + tx = \gcd(m, x) = 1. \]

So,

\[sm \equiv 0 \pmod{m}, \]
\[tx \equiv 1 \pmod{m}. \]

For uniqueness mod \(m \). Assume \(tx \equiv 1 \pmod{m} \) and \(ux \equiv 1 \pmod{m} \).

Therefore,

\[tx \equiv ux \pmod{m}. \]

Since \(\gcd(m, x) = 1 \) it follows that

\[t \equiv u \pmod{m}. \]

Compute the multiplicative inverse using extended Euclidean algorithm.
Multiplicative inverses mod m when $\gcd(m, x) = 1$

Theorem

If m, x are positive integers and $\gcd(m, x) = 1$ then x has a multiplicative inverse mod m (and it is unique mod m)

Proof.

By Bézout’s theorem there are s and t such that

$$sm + tx = 1 = \gcd(m, x)$$

So, $sm + tx \equiv 1 \pmod{m}$. As $sm \equiv 0 \pmod{m}$, so $tx \equiv 1 \pmod{m}$.

For uniqueness mod m. Assume $tx \equiv 1 \pmod{m}$ and $ux \equiv 1 \pmod{m}$. Therefore, $tx \equiv ux \pmod{m}$. Since $\gcd(m, x) = 1$ it follows that $t \equiv u \pmod{m}$.

\[\blacksquare\]
Theorem

If m, x are positive integers and $\gcd(m, x) = 1$ then x has a multiplicative inverse mod m (and it is unique mod m)

Proof.

By Bézout’s theorem there are s and t such that

$$sm + tx = 1 = \gcd(m, x)$$

So, $sm + tx \equiv 1 \pmod{m}$. As $sm \equiv 0 \pmod{m}$, so $tx \equiv 1 \pmod{m}$.

For uniqueness mod m. Assume $tx \equiv 1 \pmod{m}$ and $ux \equiv 1 \pmod{m}$.

Therefore, $tx \equiv ux \pmod{m}$. Since $\gcd(m, x) = 1$ it follows that $t \equiv u \pmod{m}$.

Compute the multiplicative inverse using extended euclidean algorithm
Theorem

Let m_1, m_2, \ldots, m_n be pairwise relatively prime positive integers greater than 1 and a_1, a_2, \ldots, a_n be arbitrary integers. Then the system

\[
\begin{align*}
x &\equiv a_1 \pmod{m_1} \\
x &\equiv a_2 \pmod{m_2} \\
&\vdots \\
x &\equiv a_n \pmod{m_n}
\end{align*}
\]

has a unique solution modulo $m = m_1 m_2 \cdots m_n$
Chinese remainder theorem

Theorem

Let \(m_1, m_2, \ldots, m_n \) be pairwise relatively prime positive integers greater than 1 and \(a_1, a_2, \ldots, a_n \) be arbitrary integers. Then the system

\[
\begin{align*}
x &\equiv a_1 \pmod{m_1} \\
x &\equiv a_2 \pmod{m_2} \\
& \vdots \\
x &\equiv a_n \pmod{m_n}
\end{align*}
\]

has a unique solution modulo \(m = m_1 m_2 \cdots m_n \)

Proof.

In the book

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 4/13
Example

\[\begin{align*}
x & \equiv 2 \pmod{3} \\
x & \equiv 3 \pmod{5} \\
x & \equiv 5 \pmod{7}
\end{align*} \]
Example

\[x \equiv 2 \pmod{3} \]
\[x \equiv 3 \pmod{5} \]
\[x \equiv 5 \pmod{7} \]

\[m = 3 \cdot 5 \cdot 7 = 105 \]
Example

\[x \equiv 2 \pmod{3} \]
\[x \equiv 3 \pmod{5} \]
\[x \equiv 5 \pmod{7} \]

- \(m = 3 \cdot 5 \cdot 7 = 105 \)
- \(M_1 = 35 \) and 2 is an inverse of \(M_1 \) mod 3
Example

\[x \equiv 2 \pmod{3} \]
\[x \equiv 3 \pmod{5} \]
\[x \equiv 5 \pmod{7} \]

- \(m = 3 \cdot 5 \cdot 7 = 105 \)
- \(M_1 = 35 \) and 2 is an inverse of \(M_1 \) mod 3
- \(M_2 = 21 \) and 1 is an inverse of \(M_2 \) mod 5
Example

\[x \equiv 2 \pmod{3} \]
\[x \equiv 3 \pmod{5} \]
\[x \equiv 5 \pmod{7} \]

- \[m = 3 \cdot 5 \cdot 7 = 105 \]
- \[M_1 = 35 \text{ and } 2 \text{ is an inverse of } M_1 \pmod{3} \]
- \[M_2 = 21 \text{ and } 1 \text{ is an inverse of } M_2 \pmod{5} \]
- \[M_3 = 15 \text{ and } 1 \text{ is an inverse of } M_3 \pmod{7} \]
Example

\[x \equiv 2 \pmod{3} \]
\[x \equiv 3 \pmod{5} \]
\[x \equiv 5 \pmod{7} \]

- \(m = 3 \cdot 5 \cdot 7 = 105 \)
- \(M_1 = 35 \) and 2 is an inverse of \(M_1 \) mod 3
- \(M_2 = 21 \) and 1 is an inverse of \(M_2 \) mod 5
- \(M_3 = 15 \) and 1 is an inverse of \(M_3 \) mod 7
- \(x = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 5 \cdot 15 \cdot 1 \)

\[x = 140 + 63 + 75 = 278 \equiv 68 \pmod{105} \]
Example

\[x \equiv 2 \pmod{3} \]
\[x \equiv 3 \pmod{5} \]
\[x \equiv 5 \pmod{7} \]

- \(m = 3 \cdot 5 \cdot 7 = 105 \)
- \(M_1 = 35 \) and 2 is an inverse of \(M_1 \) mod 3
- \(M_2 = 21 \) and 1 is an inverse of \(M_2 \) mod 5
- \(M_3 = 15 \) and 1 is an inverse of \(M_3 \) mod 7

\[x = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 5 \cdot 15 \cdot 1 \]
\[x = 140 + 63 + 75 = 278 \equiv 68 \pmod{105} \]
Fermat’s little theorem

Theorem

If p is prime and $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$. Furthermore, for every integer a we have $a^p \equiv a \pmod{p}$.

Proof.
Assume $p \nmid a$ and so, therefore, $\gcd(p, a) = 1$. Then $a, 2a, \ldots, (p-1)a$ are not pairwise congruent modulo p; if $ia \equiv ja \pmod{p}$ because $\gcd(p, a) = 1$ then $i \equiv j \pmod{p}$ which is impossible. Therefore, each element $ja \mod p$ is a distinct element in the set $\{1, \ldots, p-1\}$. This means that the product $a \cdot 2a \cdots (p-1)a \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}$.

Therefore, $(p-1)! a^{p-1} \equiv (p-1)! \pmod{p}$. Now because $\gcd(p, q) = 1$ for $1 \leq q \leq p-1$ it follows that $a^{p-1} \equiv 1 \pmod{p}$.

Therefore, also $a^p \equiv a \pmod{p}$ and when $p | a$ then clearly $a^p \equiv a \pmod{p}$.
Fermat’s little theorem

Theorem

If p is prime and $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$. Furthermore, for every integer a we have $a^p \equiv a \pmod{p}$.

Proof.

Assume $p \nmid a$ and so, therefore, $\gcd(p, a) = 1$. Then $a, 2a, \ldots, (p - 1)a$ are not pairwise congruent modulo p; if $ia \equiv ja \pmod{p}$ because $\gcd(p, a) = 1$ then $i \equiv j \pmod{p}$ which is impossible. Therefore, each element $ja \pmod{p}$ is a distinct element in the set $\{1, \ldots, p - 1\}$. This means that the product $a \cdot 2a \cdot \cdots (p - 1)a \equiv 1 \cdot 2 \cdot \cdots p - 1 \pmod{p}$. Therefore, $(p - 1)!a^{p-1} \equiv (p - 1)! \pmod{p}$. Now because $\gcd(p, q) = 1$ for $1 \leq q \leq p - 1$ it follows that $a^{p-1} \equiv 1 \pmod{p}$. Therefore, also $a^p \equiv a \pmod{p}$ and when $p|a$ then clearly $a^p \equiv a \pmod{p}$.
Computing the remainders modulo prime p

- Find $7^{222} \mod 11$
Computing the remainders modulo prime p

- Find $7^{222} \mod 11$

- By Fermat’s little theorem, we know that $7^{10} \equiv 1 \pmod{11}$, and so $(7^{10})^k \equiv 1 \pmod{11}$ for every positive integer k. Therefore, $7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} \cdot 7^2 \equiv 1^{22} \cdot 49 \equiv 5 \pmod{11}$. Hence, $7^{222} \mod 11 = 5$
Computing the remainders modulo prime p

Find 7^{222} mod 11

By Fermat’s little theorem, we know that $7^{10} \equiv 1 \pmod{11}$, and so $(7^{10})^k \equiv 1 \pmod{11}$ for every positive integer k. Therefore, $7^{222} = 7^{2\cdot10+2} = (7^{10})^2 \cdot 7^2 \equiv 1^2 \cdot 49 \equiv 5 \pmod{11}$. Hence, 7^{222} mod 11 $= 5$

$2^{340} \equiv 1 \pmod{11}$ because $2^{10} \equiv 1 \pmod{11}$
Private key cryptography

- Bob wants to send Alice a secret message M

Alice sends Bob a private key E_n (which has an inverse D_n)

Bob encrypts M and sends Alice $E_n(M)$

Alice decrypts $E_n(M)$, $D_n(E_n(M))$

Important property $D_n(E_n(M)) = M$

Alice and Bob share a secret which could be intercepted by a third party

Example use $E_n(p) = (p + 3) \mod 26$
Private key cryptography

- Bob wants to send Alice a secret message M
- Alice sends Bob a private key E_n (which has an inverse D_e)
- $D_e(E_n(M)) = M$
- Alice and Bob share a secret which could be intercepted by a third party

Example use $E_n(p) = (p + 3) \mod 26$
Private key cryptography

- Bob wants to send Alice a secret message M
- Alice sends Bob a private key E_n (which has an inverse D_e)
- Bob encrypts M and sends Alice $E_n(M)$

Alice decrypts $E_n(M)$, $D_e(E_n(M))$

Important property $D_e(E_n(M)) = M$

Alice and Bob share a secret which could be intercepted by a third party

Example use $E_n(p) = (p + 3) \mod 26$
Private key cryptography

- Bob wants to send Alice a secret message M
- Alice sends Bob a private key E_n (which has an inverse D_e)
- Bob encrypts M and sends Alice $E_n(M)$
- Alice decrypts $E_n(M)$, $D_e(E_n(M))$
Private key cryptography

- Bob wants to send Alice a secret message M
- Alice sends Bob a private key E_n (which has an inverse D_n)
- Bob encrypts M and sends Alice $E_n(M)$
- Alice decrypts $E_n(M)$, $D_n(E_n(M))$
- Important property $D_n(E_n(M)) = M$

Alice and Bob share a secret which could be intercepted by a third party

Example use $E_n(p) = (p + 3) \mod 26$
Private key cryptography

- Bob wants to send Alice a secret message M
- Alice sends Bob a private key E_n (which has an inverse D_e)
- Bob encrypts M and sends Alice $E_n(M)$
- Alice decrypts $E_n(M)$, $D_e(E_n(M))$
- Important property $D_e(E_n(M)) = M$
- Alice and Bob share a secret which could be intercepted by a third party

Example use $E_n(p) = (p + 3) \mod 26$
Private key cryptography

- Bob wants to send Alice a secret message M
- Alice sends Bob a private key En (which has an inverse De)
- Bob encrypts M and sends Alice En(M)
- Alice decrypts En(M), De(En(M))
- Important property De(En(M)) = M
- Alice and Bob share a secret which could be intercepted by a third party
- Example use En(p) = (p + 3) mod 26
Private key cryptography

- Bob wants to send Alice a secret message M.
- Alice sends Bob a private key E_n (which has an inverse D_n).
- Bob encrypts M and sends Alice $E_n(M)$.
- Alice decrypts $E_n(M)$, $D_n(E_n(M))$.
- Important property $D_n(E_n(M)) = M$.
- Alice and Bob share a secret which could be intercepted by a third party.
- Example use $E_n(p) = (p + 3) \mod 26$.
- What is $WKLV\ LV\ D\ VHFUHW$?
Bob wants to send Alice a secret message M
Public key cryptography

- Bob wants to send Alice a secret message M
- Without Alice and Bob sharing a secret
Public key cryptography

- Bob wants to send Alice a secret message M
- Without Alice and Bob sharing a secret
- Alice sends Bob a public key E_n (and keeps her inverse private key D_e secret from everyone including Bob)

Important property $D_e(E_n(M)) = M$

The challenge: D_e can't be feasibly computed from E_n; and given $E_n(M)$ one can't feasibly compute M
Public key cryptography

- Bob wants to send Alice a secret message M
- Without Alice and Bob sharing a secret
- Alice sends Bob a public key E_n (and keeps her inverse private key D_e secret from everyone including Bob)
- Bob encrypts M and sends Alice $E_n(M)$

Important property $D_e(E_n(M)) = M$

The challenge: D_e can't be feasibly computed from E_n; and given $E_n(M)$ one can't feasibly compute M
Public key cryptography

- Bob wants to send Alice a secret message M
- Without Alice and Bob sharing a secret
- Alice sends Bob a public key En (and keeps her inverse private key De secret from everyone including Bob)
- Bob encrypts M and sends Alice En(M)
- Alice decrypts En(M), De(En(M))
Public key cryptography

- Bob wants to send Alice a secret message M
- Without Alice and Bob sharing a secret
- Alice sends Bob a public key E_n (and keeps her inverse private key D_e secret from everyone including Bob)
- Bob encrypts M and sends Alice $E_n(M)$
- Alice decrypts $E_n(M)$, $D_e(E_n(M))$
- Important property $D_e(E_n(M)) = M$
Bob wants to send Alice a secret message M

Without Alice and Bob sharing a secret

Alice sends Bob a public key E_n (and keeps her inverse private key D_e secret from everyone including Bob)

Bob encrypts M and sends Alice $E_n(M)$

Alice decrypts $E_n(M)$, $D_e(E_n(M))$

Important property $D_e(E_n(M)) = M$

The challenge: D_e can’t be feasibly computed from E_n; and given $E_n(M)$ one can’t feasibly compute M
RSA Cryptosystem: Rivest, Shamir and Adleman

- Choose two distinct prime numbers p and q
- Let $n = pq$ and $k = (p - 1)(q - 1)$
- Choose integer e where $1 < e < k$ and $\gcd(e, k) = 1$
- (n, e) is released as the public key
- Let d be the multiplicative inverse of e modulo k, so $de \equiv 1 \pmod{k}$
- (n, d) is the private key and kept secret
RSA: encryption and decryption

Alice transmits her public key \((n, e)\) to Bob and keeps the private key \((n, d)\) secret.

Encryption

Bob wishes to send message \(M\) to Alice.

1. He turns \(M\) into integer \(m\), \(0 \leq m < n\), using an agreed-upon reversible protocol known as a padding scheme.
2. He computes the ciphertext \(c\) corresponding to \(c = m^e \mod n\). (This can be done quickly: see fast modular exponentiation in INF2 IADS Lecture 2.)
3. Bob transmits \(c\) to Alice.

Decryption

Alice can recover \(m\) from \(c\) by computing \(m = c^d \mod n\).

Given \(m\), she can recover the original message \(M\) by reversing the padding scheme.
RSA: encryption and decryption

Alice transmits her public key \((n, e)\) to Bob and keeps the private key \((n, d)\) secret

Encryption Bob wishes to send message \(M\) to Alice

1. **Encryption** Bob wishes to send message \(M\) to Alice

 He turns \(M\) into integer \(m\), \(0 \leq m < n\), using an agreed-upon reversible protocol known as a padding scheme.

 He computes the ciphertext \(c\) corresponding to \(c = m^e \mod n\).

 (This can be done quickly: see fast modular exponentiation in INF2 IADS Lecture 2)

2. **Decryption** Alice can recover \(m\) from \(c\) using her private key exponent \(d\) via computing \(m = c^d \mod n\).

 Given \(m\), she can recover the original message \(M\) by reversing the padding scheme.
RSA: encryption and decryption

Alice transmits her public key \((n, e)\) to Bob and keeps the private key \((n, d)\) secret

Encryption Bob wishes to send message \(M\) to Alice

1. He turns \(M\) into integer \(m, 0 \leq m < n\), using an agreed-upon reversible protocol known as a padding scheme.
RSA: encryption and decryption

Alice transmits her public key \((n, e)\) to Bob and keeps the private key \((n, d)\) secret

Encryption Bob wishes to send message \(M\) to Alice

1. He turns \(M\) into integer \(m, 0 \leq m < n\), using an agreed-upon reversible protocol known as a padding scheme
2. He computes the ciphertext \(c\) corresponding to \(c = m^e \mod n\). (This can be done quickly: see fast modular exponentiation in INF2 IADS Lecture 2)
RSA: encryption and decryption

Alice transmits her public key \((n, e)\) to Bob and keeps the private key \((n, d)\) secret

Encryption Bob wishes to send message \(M\) to Alice

1. He turns \(M\) into integer \(m\), \(0 \leq m < n\), using an agreed-upon reversible protocol known as a padding scheme
2. He computes the ciphertext \(c\) corresponding to \(c = m^e \mod n\). (This can be done quickly: see fast modular exponentiation in INF2 IADS Lecture 2)
3. Bob transmits \(c\) to Alice.
RSA: encryption and decryption

Alice transmits her public key \((n, e)\) to Bob and keeps the private key \((n, d)\) secret

Encryption Bob wishes to send message \(M\) to Alice

1. He turns \(M\) into integer \(m\), \(0 \leq m < n\), using an agreed-upon reversible protocol known as a padding scheme
2. He computes the ciphertext \(c\) corresponding to \(c = m^e \mod n\). (This can be done quickly: see fast modular exponentiation in INF2 IADS Lecture 2)
3. Bob transmits \(c\) to Alice.

Decryption Alice can recover \(m\) from \(c\)
RSA: encryption and decryption

Alice transmits her public key \((n, e)\) to Bob and keeps the private key \((n, d)\) secret

Encryption Bob wishes to send message \(M\) to Alice

1. He turns \(M\) into integer \(m, 0 \leq m < n\), using an agreed-upon reversible protocol known as a padding scheme
2. He computes the ciphertext \(c\) corresponding to \(c = m^e \mod n\).
 (This can be done quickly: see fast modular exponentiation in INF2 IADS Lecture 2)
3. Bob transmits \(c\) to Alice.

Decryption Alice can recover \(m\) from \(c\)

1. Using her private key exponent \(d\) via computing \(m = c^d \mod n\)
RSA: encryption and decryption

Alice transmits her public key \((n, e)\) to Bob and keeps the private key \((n, d)\) secret

Encryption Bob wishes to send message \(M\) to Alice

1. He turns \(M\) into integer \(m, 0 \leq m < n\), using an agreed-upon reversible protocol known as a padding scheme
2. He computes the ciphertext \(c\) corresponding to \(c = m^e \mod n\). (This can be done quickly: see fast modular exponentiation in INF2 IADS Lecture 2)
3. Bob transmits \(c\) to Alice.

Decryption Alice can recover \(m\) from \(c\)

1. Using her private key exponent \(d\) via computing \(m = c^d \mod n\)
2. Given \(m\), she can recover the original message \(M\) by reversing the padding scheme
Example

\[n = 43 \cdot 59 = 2537 \]
Example

- \(n = 43 \times 59 = 2537 \)
- \(\text{gcd}(13, 42 \times 58) = 1 \), so public key is \((2537, 13)\)

Encrypt STOP as two blocks 1819 for ST and 1415 for OP (padding scheme: position in alphabet - 1)

So, 1819 \(13 \mod 2537 = 2081 \) and 1415 \(13 \mod 2537 = 2182 \)

So encrypted message is 2081 2182

Receive message 0981 0461: decrypt it

0981 \(937 \mod 2537 = 0704 \) and 0461 \(937 \mod 2537 = 1115 \)

So decrypted message is HELP
Example

- $n = 43 \cdot 59 = 2537$
- $\text{gcd}(13, 42 \cdot 58) = 1$, so public key is $(2537, 13)$
- $d = 937$ is inverse of 13 modulo $2436 = 42 \cdot 58$; private key $(2537, 937)$

Encrypt STOP as two blocks 1819 for ST and 1415 for OP (padding scheme: position in alphabet - 1)

So, $1819 \mod 2537 = 2081$ and $1415 \mod 2537 = 2182$

So encrypted message is $2081 \ 2182$

Receive message $0981 \ 0461$: decrypt it

$0981 \mod 2537 = 0704$ and $0461 \mod 2537 = 1115$

So decrypted message is HELP
Example

- $n = 43 \cdot 59 = 2537$
- $\text{gcd}(13, 42 \cdot 58) = 1$, so public key is $(2537, 13)$
- $d = 937$ is inverse of 13 modulo $2436 = 42 \cdot 58$; private key $(2537, 937)$
- Encrypt STOP as two blocks 1819 for ST and 1415 for OP (padding scheme: position in alphabet - 1)
Example

- \(n = 43 \cdot 59 = 2537 \)
- \(\gcd(13, 42 \cdot 58) = 1 \), so public key is \((2537, 13)\)
- \(d = 937 \) is inverse of 13 modulo 2436 = 42 \cdot 58; private key \((2537, 937)\)
- Encrypt STOP as two blocks 1819 for ST and 1415 for OP (padding scheme: position in alphabet - 1)
- So, \(1819^{13} \) mod 2537 = 2081 and \(1415^{13} \) mod 2537 = 2182
Example

- $n = 43 \cdot 59 = 2537$
- $\text{gcd}(13, 42 \cdot 58) = 1$, so public key is $(2537, 13)$
- $d = 937$ is inverse of 13 modulo $2436 = 42 \cdot 58$; private key $(2537, 937)$

Encrypt STOP as two blocks 1819 for ST and 1415 for OP (padding scheme: position in alphabet - 1)

- So, $1819^{13} \mod 2537 = 2081$ and $1415^{13} \mod 2537 = 2182$
- So encrypted message is 2081 2182
Example

- $n = 43 \cdot 59 = 2537$
- $\gcd(13, 42 \cdot 58) = 1$, so public key is $(2537, 13)$
- $d = 937$ is inverse of 13 modulo $2436 = 42 \cdot 58$; private key $(2537, 937)$
- Encrypt STOP as two blocks 1819 for ST and 1415 for OP (padding scheme: position in alphabet - 1)
- So, $1819^{13} \mod 2537 = 2081$ and $1415^{13} \mod 2537 = 2182$
- So encrypted message is 2081 2182
- Receive message 0981 0461: decrypt it

So decrypted message is HELP
Example

- $n = 43 \cdot 59 = 2537$
- $\gcd(13, 42 \cdot 58) = 1$, so public key is $(2537, 13)$
- $d = 937$ is inverse of 13 modulo $2436 = 42 \cdot 58$; private key $(2537, 937)$
- Encrypt STOP as two blocks 1819 for ST and 1415 for OP (padding scheme: position in alphabet - 1)
- So, $1819^{13} \mod 2537 = 2081$ and $1415^{13} \mod 2537 = 2182$
- So encrypted message is $2081 \ 2182$
- Receive message $0981 \ 0461$: decrypt it
- $0981^{937} \mod 2537 = 0704$ and $0461^{937} \mod 2537 = 1115$
Example

- \(n = 43 \cdot 59 = 2537 \)
- \(\gcd(13, 42 \cdot 58) = 1 \), so public key is \((2537, 13)\)
- \(d = 937 \) is inverse of 13 modulo \(2436 = 42 \cdot 58\); private key \((2537, 937)\)
- Encrypt STOP as two blocks 1819 for ST and 1415 for OP (padding scheme: position in alphabet - 1)
- So, \(1819^{13} \mod 2537 = 2081\) and \(1415^{13} \mod 2537 = 2182\)
- So encrypted message is 2081 2182
- Receive message 0981 0461: decrypt it
- \(0981^{937} \mod 2537 = 0704\) and \(0461^{937} \mod 2537 = 1115\)
- So decrypted message is HELP
RSA: correctness of decryption

Given that \(c = m^e \mod n \), is \(m = c^d \mod n \)?

\[
c^d = (m^e)^d \equiv m^{ed} \pmod{n}
\]

By construction, \(d \) and \(e \) are each other's multiplicative inverses modulo \(k \), i.e. \(ed \equiv 1 \pmod{k} \). Also \(k = (p - 1)(q - 1) \). Thus \(ed - 1 = h(p - 1)(q - 1) \) for some integer \(h \). We consider \(m^{ed} \mod p \)

If \(p \nmid m \) then
\[
m^{ed} = m^{h(p-1)(q-1)} m = (m^{p-1})^{h(q-1)} m \equiv 1^{h(q-1)} m \equiv m \pmod{p} \] (by Fermat's little theorem)

Otherwise \(m^{ed} \equiv 0 \equiv m \pmod{p} \)

Symmetrically, \(m^{ed} \equiv m \pmod{q} \)

Since \(p, q \) are distinct primes, we have \(m^{ed} \equiv m \pmod{pq} \). Since \(n = pq \), we have \(c^d = m^{ed} \equiv m \pmod{n} \)