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Expected Value (Expectation) of a Random Variable
Recall: A random variable (r.v.), is a function X : Ω→ R, that
assigns a real value to each outcome in a sample space Ω.

The expected value, or expectation, or mean, of a random
variable X : Ω→ R, denoted by E(X ), is defined by:

E(X ) =
∑
s∈Ω

P(s)X (s)

Here P : Ω→ [0,1] is the underlying probability distribution on Ω.

Question: Let X be the r.v. outputing the number that comes up
when a fair die is rolled. What is the expected value, E(X ), of X?

Answer: E(X ) =
6∑

i=1

1
6
· i =

21
6

=
7
2
.
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A bad way to calculate expectation

The definition of expectation, E(X ) =
∑

s∈Ω P(s)X (s), can be
used directly to calculate E(X ). But sometimes this is
horribly inefficient.

Example: Suppose that a biased coin, which comes up heads
with probability p each time, is flipped 11 times consecutively.
Question: What is the expected # of heads?

Bad way to answer this: Let’s try to use the definition of E(X )
directly, with Ω = {H,T}11. Note that |Ω| = 211 = 2048.
So, the sum

∑
s∈Ω P(s)X (s) has 2048 terms!

This is clearly not a practical way to compute E(X ).
Is there a better way? Yes.
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Better expression for the expectation
Recall P(X = r) denotes the probability P({s ∈ Ω | X (s) = r}).
Recall that for a function X : Ω→ R,

range(X ) = {r ∈ R | ∃s ∈ Ω such that X (s) = r}

Theorem: For a random variable X : Ω→ R,

E(X ) =
∑

r∈range(X)

P(X = r) · r

Proof: E(X ) =
∑

s∈Ω P(s)X (s), but for each r ∈ range(X ), if we
sum all terms P(s)X (s) such that X (s) = r , we get P(X = r) · r
as their sum. So, summing over all r ∈ range(X ) we get
E(X ) =

∑
r∈range(X) P(X = r) · r .

So, if |range(X )| is small, and if we can compute P(X = r), then
we need to sum a lot fewer terms to calculate E(X ).
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Expected # of successes in n Bernoulli trials
Theorem: The expected # of successes in n (independent)
Bernoulli trials, with probability p of success in each, is np.

Note: We’ll see later that we do not need independence for this.
First, a proof which uses mutual independence: For
Ω = {H,T}n, let X : Ω→ N count the number of successes in n
Bernoulli trials. Let q = (1− p). Then...

E(X ) =
n∑

k=0

P(X = k) · k

=
n∑

k=1

(
n
k

)
pkqn−k · k

The second equality holds because, assuming mutual
independence, P(X = k) is the binomial distribution b(k ; n,p).
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first proof continued

E(X ) =
n∑

k=0

P(X = k) · k =
n∑

k=1

(
n
k

)
pkqn−k · k =

=
n∑

k=1

n!

k !(n − k)!
pkqn−k · k =

n∑
k=1

n!

(k − 1)!(n − k)!
pkqn−k

=
n∑

k=1

n · (n − 1)!

(k − 1)!(n − k)!
pkqn−k = n

n∑
k=1

(
n − 1
k − 1

)
pkqn−k

= np
n∑

k=1

(
n − 1
k − 1

)
pk−1qn−k = np

n−1∑
j=0

(
n − 1

j

)
pjqn−1−j

= np(p + q)n−1

= np .
We will soon see this was an unnecessarily complicated proof.
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Expectation of a geometrically distributed r.v.
Question: A coin comes up heads with probability p > 0 each
time it is flipped. The coin is flipped repeatedly until it comes up
heads. What is the expected number of times it is flipped?

Note: This simply asks: “What is the expected value E(X ) of a
geometrically distributed random variable with parameter p?”
Answer: Ω = {H,TH,TTH, . . .}, and P(T k−1H) = (1− p)k−1p.
And clearly X (T k−1H) = k . Thus E(X ) =

∑
s∈Ω P(s)X (s) =

E(X ) =
∞∑

k=1

(1− p)k−1p · k = p
∞∑

k=1

k(1− p)k−1 = p · 1
p2 =

1
p
.

This is because:
∑∞

k=1 k · xk−1 = 1
(1−x)2 , for |x | < 1.

Example: If p = 1/4, then the expected number of coin tosses
before we see Heads for the first time is 4.
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Linearity of Expectation (VERY IMPORTANT)
Theorem (Linearity of Expectation): For any random variables
X ,X1, . . . ,Xn on Ω, E(X1 + X2 + . . .+ Xn) = E(X1) + . . .+ E(Xn).

Furthermore, for any a,b ∈ R,
E(a X + b) = a E(X ) + b.

(In other words, the expectation function is a linear function.)

Proof:

E(
n∑

i=1

Xi) =
∑
s∈Ω

P(s)
n∑

i=1

Xi(s) =
n∑

i=1

∑
s∈Ω

P(s)Xi(s) =
n∑

i=1

E(Xi).

E(aX + b) =
∑
s∈Ω

P(s)(aX (s) + b) = (a
∑
s∈Ω

P(s)X (s)) + b
∑
s∈Ω

P(s)

= aE(X ) + b.

Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 8 / 13



Using linearity of expectation
Theorem: The expected # of successes in n (not necessarily
independent) Bernoulli trials, with probability p of success in
each trial, is np.

Easy proof, via linearity of expectation: For Ω = {H,T}n, let
X be the r.v. counting the number of successes, and for each i ,
let Xi : Ω→ R be the binary r.v. defined by:

Xi((s1, . . . , sn)) =

{
1 if si = H
0 if si = T

Note that E(Xi) = p · 1 + (1− p) · 0 = p , for all i ∈ {1, . . . ,n}.
Also, clearly, X = X1 + X2 + . . . + Xn , so:

E(X ) = E(X1 + . . . + Xn) =
n∑

i=1

E(Xi) = np.

Note: this holds even if the n coin tosses are totally correlated.
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Using linearity of expectation, continued
Hatcheck problem: At a restaurant, the hat-check person
forgets to put claim numbers on hats.
n customers check their hats in, and they each get a random hat
back when they leave the restuarant.
What is the expected number, E(X ), of people who get their
correct hat back?

Answer: Let Xi be the r.v. that is 1 if the i ’th customer gets their
hat back, and 0 otherwise.
Clearly, E(X ) = E(

∑
i Xi).

Furthermore, E(Xi) = P(i ’th person gets its hat back) = 1/n.
Thus, E(X ) = n · (1/n) = 1.

This would be much harder to prove without using the linearity
of expectation.
Note: E(X ) doesn’t even depend on n in this case.
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Independence of Random Variables
Definition: Two random variables, X and Y , are called
independent if for all r1, r2 ∈ R:

P(X = r1 and Y = r2) = P(X = r1) · P(Y = r2)

Example: Two die are rolled. Let X1 be the number that comes
up on die 1, and let X2 be the number that comes up on die 2.
Then X1 and X2 are independent r.v.’s.

Theorem: If X and Y are independent random variables on the
same space Ω. Then

E(XY ) = E(X )E(Y )

We will not prove this in class. (The proof is a simple
re-arrangement of the sums in the definition of expectation. See
Rosen’s book for a proof.)
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Variance

The “variance” and “standard deviation” of a r.v., X , give us ways
to measure (roughly) “on average, how far off the value of the
r.v. is from its expectation”.

Variance and Standard Deviation
Definition: For a random variable X on a sample space Ω, the
variance of X , denoted by V (X ), is defined by:

V (X ) = E((X − E(X ))2) =
∑
s∈Ω

(X (s)− E(X ))2P(s)

The standard deviation of X , denoted σ(X ), is defined by

σ(X ) =
√

V (X )
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Example, and a useful identity for variance
Example: Consider the r.v., X , such that P(X = 0) = 1, and the
r.v. Y , such that P(Y = −10) = P(Y = 10) = 1/2.
Then E(X ) = E(Y ) = 0, but V (X ) = 0 = σ(X ), whereas
V (Y ) = 100 and σ(Y ) = 10.

Theorem: For any random variable X ,

V (X ) = E(X 2)− E(X )2

Proof:
V (X ) = E((X − E(X ))2)

= E(X 2 − 2XE(X ) + E(X )2)

= E(X 2)− 2E(X )E(X ) + E(X )2

= E(X 2)− E(X )2.
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