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Multiplicative inverses

Every real number x , except x = 0, has a multiplicative inverse
y = 1

x ; so xy = 1

Similarly for x mod m, except x = 0, we wish to find y mod m
such that xy ≡ 1 (mod m)

x = 8 and m = 15. Then x 2 = 16 ≡ 1 (mod 15), so 2 is a
multiplicative inverse of 8 (mod 15)

x = 12 and m = 15
The sequence {xa (mod m) | a = 0,1,2, ...} is periodic, and takes
on the values {0,12,9,6,3}. So, 12 has no multiplicative inverse
mod 15
Notice gcd(8,15) = 1 whereas gcd(12,15) = 3
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Multiplicative inverses mod m when gcd(m, x) = 1

Theorem
If m, x are positive integers and gcd(m, x) = 1 then x has a
multiplicative inverse mod m (and it is unique mod m)

Proof.
By Bézout’s theorem there are s and t such that

sm + tx = 1 = gcd(m, x)

So, sm + tx ≡ 1 (mod m). As sm ≡ 0 (mod m), so tx ≡ 1(mod m).
For uniqueness mod m. Assume tx ≡ 1 (mod m) and ux ≡ 1 (mod m).
Therefore, tx ≡ ux (mod m). Since gcd(m, x) = 1 it follows that
t ≡ u (mod m).

Compute the multiplicative inverse using extended euclidean algorithm
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Chinese remainder theorem

Theorem
Let m1,m2, . . . ,mn be pairwise relatively prime positive integers
greater than 1 and a1,a2, . . . ,an be arbitrary integers. Then the system

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)
...
x ≡ an (mod mn)

has a unique solution modulo m = m1m2 · · ·mn

Proof.
In the book
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Example

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 5 (mod 7)

m = 3 · 5 · 7 = 105
M1 = 35 and 2 is an inverse of M1 mod 3
M2 = 21 and 1 is an inverse of M2 mod 5
M3 = 15 and 1 is an inverse of M3 mod 7
x = 2 · 35 · 2 + 3 · 21 · 1 + 5 · 15 · 1
x = 140 + 63 + 75 = 278 ≡ 68 (mod 105)
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Fermat’s little theorem

Theorem
If p is prime and p 6 |a, then ap−1 ≡ 1 (mod p). Furthermore, for every
integer a we have ap ≡ a (mod p)

Proof.
Assume p 6 |a and so, therefore, gcd(p,a) = 1. Then a,2a, . . . , (p − 1)a
are not pairwise congruent modulo p; if ia ≡ ja (mod p) because
gcd(p,a) = 1 then i ≡ j (mod p) which is impossible. Therefore, each
element ja mod p is a distinct element in the set {1, . . . ,p − 1}. This
means that the product a · 2a · · · (p − 1)a ≡ 1 · 2 · · · p − 1 (mod p).
Therefore, (p − 1)!ap−1 ≡ (p − 1)! (mod p). Now because
gcd(p,q) = 1 for 1 ≤ q ≤ p − 1 it follows that ap−1 ≡ 1 (mod p).
Therefore, also ap ≡ a (mod p) and when p|a then clearly
ap ≡ a (mod p).
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Computing the remainders modulo prime p

Find 7222 mod 11

By Fermat’s little theorem, we know that 710 ≡ 1 (mod 11), and so
(710)k ≡ 1 (mod 11) for every positive integer k . Therefore,
7222 = 722·10+2 = (710)22 72 ≡ 12249 ≡ 5 (mod 11). Hence,
7222 mod 11 = 5

2340 ≡ 1 (mod 11) because 210 ≡ 1 (mod 11)
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Private key cryptography

Bob wants to send Alice a secret message M

Alice sends Bob a private key En (which has an inverse De)
Bob encrypts M and sends Alice En(M)
Alice decrypts En(M), De(En(M))
Important property De(En(M)) = M
Alice and Bob share a secret which could be intercepted by a third
party
Example use En(p) = (p + 3) mod 26
What is WKLV LV D VHFSHW ?
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Public key cryptography

Bob wants to send Alice a secret message M

Without Alice and Bob sharing a secret
Alice sends Bob a public key En (and keeps her inverse private
key De secret from everyone including Bob)
Bob encrypts M and sends Alice En(M)
Alice decrypts En(M), De(En(M))
Important property De(En(M)) = M
The challenge: De can’t be feasibly computed from En; and given
En(M) one can’t feasibly compute M
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RSA Cryptosystem: Rivest, Shamir and Adleman

Choose two distinct prime numbers p and q

Let n = pq and k = (p − 1)(q − 1)

Choose integer e where 1 < e < k and gcd(e, k) = 1

(n,e) is released as the public key

Let d be the multiplicative inverse of e modulo k , so
de ≡ 1 (mod k)

(n,d) is the private key and kept secret
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RSA: encryption and decryption

Alice transmits her public key (n,e) to Bob and keeps the private key
(n,d) secret

Encryption Bob wishes to send message M to Alice
1 He turns M into integer m, 0 ≤ m < n, using an agreed-upon

reversible protocol known as a padding scheme
2 He computes the ciphertext c corresponding to c = me mod n.

(This can be done quickly)
3 Bob transmits c to Alice.

Decryption Alice can recover m from c
1 Using her private key exponent d via computing m = cd mod n
2 Given m, she can recover the original message M by reversing the

padding scheme
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Example

n = 43 · 59 = 2537

gcd(13,42 · 58) = 1, so public key is (2537,13)
d = 937 is inverse of 13 modulo 2436 = 42 · 58; private key
(2537,937)
Encrypt STOP as two blocks 1819 for ST and 1415 for OP
(padding scheme: position in alphabet - 1)
So, 181913 mod 2537 = 2081 and 141513 mod 2537 = 2182
So encrypted message is 2081 2182
Receive message 0981 0461: decrypt it
0981937 mod 2537 = 0704 and 0461937 mod 2537 = 1115
So decrypted message is HELP
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RSA: correctness of decryption

Given that c = me mod n, is m = cd mod n?

cd = (me)d ≡ med (mod n)

By construction, d and e are each others multiplicative inverses
modulo k , i.e. ed ≡ 1 (mod k). Also k = (p − 1)(q − 1). Thus
ed − 1 = h(p − 1)(q − 1) for some integer h. We consider med mod p
If p 6 |m then
med = mh(p−1)(q−1)m = (mp−1)h(q−1)m ≡ 1h(q−1)m ≡ m (mod p) (by
Fermat’s little theorem)
Otherwise med ≡ 0 ≡ m (mod p)
Symmetrically, med ≡ m (mod q)
Since p, q are distinct primes, we have med ≡ m (mod pq). Since
n = pq, we have cd = med ≡ m (mod n)
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