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Finite and infinite sets

A= {1,2,3} is afinite set with 3 elements

B={ab,c,d}and C = {1,2,3,4} are finite sets with 4 elements

For finite sets, | X| < |Y| iff there is an injection f : X — Y

For finite sets, | X| = | Y| iff there is an bijection f : X — Y

ZT, N, Z, Q, R are infinite sets

When do two infinite sets have the same size?
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Finite and infinite sets

A= {1,2,3} is afinite set with 3 elements

B={ab,c,d}and C = {1,2,3,4} are finite sets with 4 elements

For finite sets, | X| < |Y| iff there is an injection f : X — Y

For finite sets, | X| = | Y| iff there is an bijection f : X — Y
e Z* N, Z,Q, R are infinite sets

@ When do two infinite sets have the same size?

@ Same answer
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Cardinality of sets

Definition
@ Two sets A and B have the same cardinality, |A| = |B|, iff there
exists a bijection from Ato B
@ |A| < |B] iff there exists an injection from Ato B
@ |A| < |BJiff |A| < |B| and |A| # |B| (A smaller cardinality than B)
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Unlike finite sets, for infinite sets A C B and |A| = |B|
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@ Two sets A and B have the same cardinality, |A| = |B, iff there
exists a bijection from Ato B
@ |A| < |B] iff there exists an injection from Ato B
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v

Unlike finite sets, for infinite sets A C B and |A| = |B|

Even = {2n| n € N} ¢ Nand |Even| = |N]|
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Cardinality of sets

Definition
@ Two sets A and B have the same cardinality, |A| = |B, iff there
exists a bijection from Ato B
@ |A| < |B] iff there exists an injection from Ato B
@ |A| < |BJiff |A| < |B| and |A| # |B| (A smaller cardinality than B)

v

Unlike finite sets, for infinite sets A C B and |A| = |B|

Even = {2n| n € N} ¢ Nand |Even| = |N]|

f: Even — N with f(2n) = n'is a bijection
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Countable sets
Definition

@ A set Sis called countably infinite, iff it has the same cardinality as
the positive integers, |Z"| = | S|
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Countable sets

Definition
@ A set Sis called countably infinite, iff it has the same cardinality as
the positive integers, |Z"| = | S|
@ A setis called countable iff it is either finite or countably infinite
@ A set that is not countable is called uncountable

N is countably infinite; what is the bijection f : Z+ — N?

Colin Stirling (Informatics) Discrete Mathematics (Section 2.5) Today 4/13



Countable sets

Definition
@ A set Sis called countably infinite, iff it has the same cardinality as
the positive integers, |Z"| = | S|
@ A setis called countable iff it is either finite or countably infinite
@ A set that is not countable is called uncountable

N is countably infinite; what is the bijection f : Z+ — N?

Z is countably infinite; what is the bijection g : Z+ — Z?
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The positive rational numbers are countable
Construct a bijection f : Z+ — QT

Colin Stirling (Informatics)

Discrete Mathematics (Section 2.5)



The positive rational numbers are countable
Construct a bijection f : Z+ — QT

List fractions p/q with g = nin the n'' row
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The positive rational numbers are countable
Construct a bijection f: ZT — QT

List fractions p/q with g = nin the n'' row

f traverses this list in the order for m= 2,3, 4, ... visiting all p/q with
p + q = m (and listing only new rationals)
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The positive rational numbers are countable
Construct a bijection f: ZT — QT

List fractions p/q with g = nin the n'' row

f traverses this list in the order for m= 2,3, 4, ... visiting all p/q with
p + q = m (and listing only new rationals)

Terms not circled C / / / /
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Countable sets

Theorem

If A and B are countable sets, then AU B is countable
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Countable sets

Theorem

If A and B are countable sets, then AU B is countable
Proof in book
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Countable sets

Theorem
If A and B are countable sets, then AU B is countable J

Proof in book

Theorem

If I'is countable and for each i € | the set A; is countable then | J;., A; is
countable
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Finite strings
Theorem
infinite

The set ** of all finite strings over a finite alphabet ¥ is countably
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Finite strings
Theorem

The set ¥* of all finite strings over a finite alphabet ¥ is countably
infinite

Proof.

@ First define an (alphabetical) ordering on the symbols in &
Show that the strings can be listed in a sequence

First single string ¢ of length 0

Then all strings of length 1 in lexicographic order
Then all strings of length 2 in lexicographic order
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Finite strings
Theorem

The set ¥* of all finite strings over a finite alphabet ¥ is countably
infinite

Proof.

@ First define an (alphabetical) ordering on the symbols in &
Show that the strings can be listed in a sequence

First single string ¢ of length 0

Then all strings of length 1 in lexicographic order
Then all strings of length 2 in lexicographic order

@ Each of these sets is countable; so is their union X*

L]
The set of Java-programs is countable; a program is just a finite string
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Infinite binary strings

@ An infinite length string of bits 10010. ..
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Infinite binary strings

@ An infinite length string of bits 10010. ..

@ Such a string is a function d : Z* — {0,1}
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Infinite binary strings

@ An infinite length string of bits 10010. ..
@ Such a string is a function d : Z* — {0,1}

@ With the property dy, = d(m) is the mth symbol
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Uncountable sets

Theorem

The set of infinite binary strings is uncountable
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Uncountable sets

Theorem
The set of infinite binary strings is uncountable J

Proof.

Let X be the set of infinite binary strings. For a contradiction assume
that a bijection f : ZT — X exists. So, f must be onto (surjective).
Assume that f(i) = d' for i € Z*. So, X = {d"',d?,...,d™, ...}. Define
the infinite binary string d as follows: d, = (d}] + 1) mod 2. But for
each m, d # d™ because dn # d}J. So, f is not a surjection. O

v
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Uncountable sets

Theorem
The set of infinite binary strings is uncountable J

Proof.

Let X be the set of infinite binary strings. For a contradiction assume
that a bijection f : ZT — X exists. So, f must be onto (surjective).
Assume that f(i) = d' for i € Z*. So, X = {d"',d?,...,d™, ...}. Define
the infinite binary string d as follows: d, = (d}] + 1) mod 2. But for
each m, d # d™ because dn # d}J. So, f is not a surjection. O

v

The technique used here is called diagonalization

Similar argument shows that R via [0, 1] is uncountable using infinite
decimal strings (see book)
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More on the uncountable

Corollary

The set of functions F = {f | f : Z — Z} is uncountable
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Corollary
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More on the uncountable

Corollary
The set of functions F = {f | f : Z — Z} is uncountable J

The set of functions C = {f|f: Z — Z is computable} is countable

Therefore, “most functions” in F are not computable!
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Schroder-Bernstein Theorem

Theorem

If Al < |B| and |B| < |A| then |A| = |B|
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Schroder-Bernstein Theorem

Theorem

If Al < |B| and |B| < |A| then |A| = |B|

@ Example |(0,1)| = |(0,1]|

@ [(0,1)] < (0, 1]| using identity function

@ [(0,1]] < ](0,1)| use f(x) = x/2as (0,1/2] C (0,1)
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Cantor’s theorem
Theorem

Al < [P(A)|
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Cantor’s theorem

Theorem
|Al < |P(A)]

Proof.
Consider the injection f : A — P(A) with f(a) = {a} for any a € A.
Therefore, |A| < |P(A)|. Next we show there is not a surjection

f: A— P(A). For a contradiction, assume that a surjection f exists.
We definethe set BC A: B={x € A| x ¢ f(x)}. Since fis a
surjection, there must exist an a € As.t. B = f(a). Now there are two
cases:

@ If a € Bthen, by definition of B, a ¢ B = f(a). Contradiction

Q@ If a¢ Bthen a ¢ f(a); by definition of B, a € B. Contradiction
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Implications of Cantor’s theorem

@ P(N) is not countable (in fact, |P(N)| = |R|)
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@ P(N) is not countable (in fact, |P(N)| = |R|)

@ The Continuum Hypothesis claims there is no set S with
IN| <|S] < [R|

@ It was 1st of Hilbert’s 23 open problems presented in 1900.

Shown to be independent of ZF set theory by Gddel/Cohen in
1963: cannot be proven/disproven in ZF
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Implications of Cantor’s theorem

@ P(N) is not countable (in fact, |P(N)| = |R|)

@ The Continuum Hypothesis claims there is no set S with
IN| <[S] < [R|

@ It was 1st of Hilbert’s 23 open problems presented in 1900.

Shown to be independent of ZF set theory by Gddel/Cohen in
1963: cannot be proven/disproven in ZF

@ There exists an infinite hierarchy of sets of ever larger cardinality
@ Sp:=Nand S 1 :=P(S))
@[Syl < ISy <...< S| < |Si1l < ...
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