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Recall propositional logic from last year (in Inf1CL)

Propositions can be constructed from other propositions using logical
connectives

Negation: ¬
Conjunction: ∧
Disjunction: ∨
Implication: →
Biconditional: ↔

The truth of a proposition is defined by the truth values of its
elementary propositions and the meaning of connectives

The meaning of logical connectives can be defined using truth tables
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Examples of logical implication and equivalence

(p ∧ (p → q))→ q
(p ∧ ¬p)→ q
((p → q) ∧ (q → r))→ (p → r)
...

(p → q)↔ (¬q → ¬p)

¬(p ∧ q)↔ (¬p ∨ ¬q) De Morgan
¬(p ∨ q)↔ (¬p ∧ ¬q) De Morgan
¬(p → q)↔ (p ∧ ¬q)

...
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Propositional logic is not “enough”

In propositional logic, from

All humans are mortal (proposition p)
Socrates is human (proposition q)

we cannot derive

Socrates is mortal (proposition r )

(p ∧ q)→ r is not a tautology

We need a language to talk about objects, their properties and their
relations
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Predicate logic

Extends propositional logic by the new features
Variables: x , y ,z, . . .
Predicates: P(x), Q(x), R(x , y), M(x , y , z), . . .
Quantifiers: ∀, ∃

Predicates are a generalisation of propositions
Can contain variables M(x , y , z)

Variables stand for (and can be replaced by) elements from their
domain
The truth value of a predicate depends on the values of its
variables
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Examples

P(x) is “x > 5” and x ranges over Z (integers)
P(8) is true
P(−1) is false

H(x) is “x is human”; M(x) is “x is mortal” and x ranges over animals
M(Socrates) is true
H(Sansa) is false

D(x , y) is “x divides y ” and x , y range over Z+ (positive integers)
D(3,9) is true
D(2,9) is false

S(x1, . . . , x11, y) is “x1 + . . .+ x11 is y ”
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Quantifiers

Universal quantifier, “For all”: ∀
∀x P(x) asserts that P(x) is true for every x in the assumed
domain

Existential quantifier, “There exists”: ∃
∃x P(x) asserts that P(x) is true for some x in the assumed
domain

The quantifiers are said to bind the variable x in these
expressions. Variables in the scope of some quantifier are called
bound variables. All other variables in the expression are called
free variables

A formula that does not contain any free variables is a proposition
and has a truth value
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Quantifier Rule

Rule of inference

∀x P(x)

P(v)
v is a value in assumed domain

From ∀x P(x) is true infer that P(v) is true for any value v in the
assumed domain

¬(∀x P(x))↔ ∃x ¬P(x) ¬(∃x P(x))↔ ∀x ¬P(x)
It is not the case that for all x P(x) if, and only if, P(x) is not true
for some x

We always assume that a domain is nonempty
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Our example

From All humans are mortal and Socrates is human derive
Socrates is mortal

H(x) is “x is human”; M(x) is “x is mortal”
All humans are mortal ∀x (H(x)→ M(x))

Socrates is human H(Socrates)

How do we get M(Socrates) ?
From ∀x (H(x)→ M(x)) we derive H(Socrates)→ M(Socrates)

By propositional reasoning, (p → q and p) implies q
So, H(Socrates)→ M(Socrates) and H(Socrates) implies
M(Socrates)

Colin Stirling (Informatics) Discrete Mathematics (Chap 1) Today 9 / 27



Our example

From All humans are mortal and Socrates is human derive
Socrates is mortal
H(x) is “x is human”; M(x) is “x is mortal”

All humans are mortal ∀x (H(x)→ M(x))

Socrates is human H(Socrates)

How do we get M(Socrates) ?
From ∀x (H(x)→ M(x)) we derive H(Socrates)→ M(Socrates)

By propositional reasoning, (p → q and p) implies q
So, H(Socrates)→ M(Socrates) and H(Socrates) implies
M(Socrates)

Colin Stirling (Informatics) Discrete Mathematics (Chap 1) Today 9 / 27



Our example

From All humans are mortal and Socrates is human derive
Socrates is mortal
H(x) is “x is human”; M(x) is “x is mortal”
All humans are mortal ∀x (H(x)→ M(x))

Socrates is human H(Socrates)

How do we get M(Socrates) ?
From ∀x (H(x)→ M(x)) we derive H(Socrates)→ M(Socrates)

By propositional reasoning, (p → q and p) implies q
So, H(Socrates)→ M(Socrates) and H(Socrates) implies
M(Socrates)

Colin Stirling (Informatics) Discrete Mathematics (Chap 1) Today 9 / 27



Our example

From All humans are mortal and Socrates is human derive
Socrates is mortal
H(x) is “x is human”; M(x) is “x is mortal”
All humans are mortal ∀x (H(x)→ M(x))

Socrates is human H(Socrates)

How do we get M(Socrates) ?
From ∀x (H(x)→ M(x)) we derive H(Socrates)→ M(Socrates)

By propositional reasoning, (p → q and p) implies q
So, H(Socrates)→ M(Socrates) and H(Socrates) implies
M(Socrates)

Colin Stirling (Informatics) Discrete Mathematics (Chap 1) Today 9 / 27



Our example

From All humans are mortal and Socrates is human derive
Socrates is mortal
H(x) is “x is human”; M(x) is “x is mortal”
All humans are mortal ∀x (H(x)→ M(x))

Socrates is human H(Socrates)

How do we get M(Socrates) ?

From ∀x (H(x)→ M(x)) we derive H(Socrates)→ M(Socrates)

By propositional reasoning, (p → q and p) implies q
So, H(Socrates)→ M(Socrates) and H(Socrates) implies
M(Socrates)

Colin Stirling (Informatics) Discrete Mathematics (Chap 1) Today 9 / 27



Our example

From All humans are mortal and Socrates is human derive
Socrates is mortal
H(x) is “x is human”; M(x) is “x is mortal”
All humans are mortal ∀x (H(x)→ M(x))

Socrates is human H(Socrates)

How do we get M(Socrates) ?
From ∀x (H(x)→ M(x)) we derive H(Socrates)→ M(Socrates)

By propositional reasoning, (p → q and p) implies q
So, H(Socrates)→ M(Socrates) and H(Socrates) implies
M(Socrates)

Colin Stirling (Informatics) Discrete Mathematics (Chap 1) Today 9 / 27



Our example

From All humans are mortal and Socrates is human derive
Socrates is mortal
H(x) is “x is human”; M(x) is “x is mortal”
All humans are mortal ∀x (H(x)→ M(x))

Socrates is human H(Socrates)

How do we get M(Socrates) ?
From ∀x (H(x)→ M(x)) we derive H(Socrates)→ M(Socrates)

By propositional reasoning, (p → q and p) implies q

So, H(Socrates)→ M(Socrates) and H(Socrates) implies
M(Socrates)

Colin Stirling (Informatics) Discrete Mathematics (Chap 1) Today 9 / 27



Our example

From All humans are mortal and Socrates is human derive
Socrates is mortal
H(x) is “x is human”; M(x) is “x is mortal”
All humans are mortal ∀x (H(x)→ M(x))

Socrates is human H(Socrates)

How do we get M(Socrates) ?
From ∀x (H(x)→ M(x)) we derive H(Socrates)→ M(Socrates)

By propositional reasoning, (p → q and p) implies q
So, H(Socrates)→ M(Socrates) and H(Socrates) implies
M(Socrates)

Colin Stirling (Informatics) Discrete Mathematics (Chap 1) Today 9 / 27



Proving ∀x P(x)

Rule of inference

P(c)

∀x P(x)
c is an arbitrary element of domain

Example: if n is an odd integer then n2 is odd
First, notice the quantifier is implicit

Let P(n) be “n is odd” and Q(n) be “the square of n is odd”

So is: ∀x (P(x)→ Q(x))
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Direct proof of ∀x (P(x)→ Q(x))

Assume n is an arbitrary element of the domain

Prove that P(n)→ Q(n)

That is, assume n is odd, then show n2 is odd
Use the definition/properties of P(n), n is odd
P(n) provided that for some k , n = 2k + 1
So n2 = (2k + 1)2 = 2(2k2 + 2k) + 1
n2 has the form for some m, n2 = 2m + 1; so Q(n)
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Any odd integer is the difference of two squares
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Proving ∀x (A(x)→ B(x)) by contraposition

Uses equivalence of (p → q) and (¬q → ¬p)

So, ∀x (A(x)→ B(x))↔ ∀x (¬B(x)→ ¬A(x))

Assume c is an arbitrary element of the domain

Prove that ¬B(c)→ ¬A(c)

That is, assume ¬B(c) then show ¬A(c)

Use the definition/properties of ¬B(c)
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if x + y is even, then x and y have the same parity

Proof Let n,m ∈ Z be arbitrary. We will prove that if n and m do not
have the same parity then n + m is odd. Without loss of generality we
assume that n is odd and m is even, that is n = 2k + 1 for some k ∈ Z,
and m = 2` for some ` ∈ Z. But then
n + m = 2k + 1 + 2` = 2(k + `) + 1. And thus n + m is odd. Now by
equivalence of a statement with it contrapositive derive that if n + m is
even, then n and m have the same parity.
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even, then n and m have the same parity.

Colin Stirling (Informatics) Discrete Mathematics (Chap 1) Today 14 / 27



If n = ab where a, b are positive integers, then a ≤
√

n
or b ≤

√
n
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Proof by contradiction

Want to prove that p is true

Assume ¬p

Derive both q and ¬q (a contradiction equivalent to False)

Therefore, ¬¬p which is equivalent to p
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√
2 is irrational

Proof Assume towards a contradiction that
√

2 is rational, that is there
are integers a and b with no common factor other than 1, such that√

2 = a/b. In that case 2 = a2/b2. Multiplying both sides by b2, we
have a2 = 2b2. Since b is an integer, so is b2, and thus a2 is even. As
we saw previously this implies that a is even, that is there is an integer
c such that a = 2c. Hence 2b2 = 4c2, hence b2 = 2c2. Now, since c is
an integer, so is c2, and thus b2 is even. Again, we can conclude that b
is even. Thus a and b have a common factor 2, contradicting the
assertion that a and b have no common factor other than 1. This
shows that the original assumption that

√
2 is rational is false, and that√

2 must be irrational.
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There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has
a prime divisor

Proof Suppose towards a contradiction that there are only finitely many
primes p1, p2, p3, . . . , pk . Consider the number q = p1p2p3 . . . pk + 1,
the product of all the primes plus one. By hypothesis q cannot be
prime because it is strictly larger than all the primes. Thus, by the
lemma, it has a prime divisor, p. Because p1, p2, p3, . . . , pk are all the
primes, p must be equal to one of them, so p is a divisor of their
product. So we have that p divides p1p2p3 . . . pk , and p divides q, but
that means p divides their difference, which is 1. Therefore p ≤ 1.
Contradiction. Therefore there are infinitely many primes.
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Proof by cases

To prove a conditional statement of the form

(p1 ∨ · · · ∨ pk )→ q

Use the tautology

((p1 ∨ · · · ∨ pk )→ q)↔ ((p1 → q) ∧ · · · ∧ (pk → q))

Each of the implications pi → q is a case
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If n is an integer then n2 ≥ n
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Proof of ∃x P(x)

Rule of inference

P(v)

∃x P(x)
v is a value in the domain

Constructive proof: exhibit an actual witness w from the domain such
that P(w) is true. Therefore, ∃x P(x)
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There exists a positive integer that can be written as
the sum of cubes of positive integers in two different
ways

1729 is such a number because

103 + 93 = 1729 = 123 + 13
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Nonconstructive proof of ∃x P(x)

Show that there must be a value v such that P(v) is true

But we don’t know what this value v is
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There exist irrational numbers x and y such that xy is
rational

Proof We need only prove the existence of at least one example.
Consider the case x =

√
2 and y =

√
2. We distinguish two cases:

Case
√

2
√

2
is rational. In that case we have shown that for the

irrational numbers x = y =
√

2, we have that xy is rational

Case
√

2
√

2
is irrational. In that case consider x =

√
2
√

2
and y =

√
2.

We then have that

xy = (
√

2
√

2
)
√

2 =
√

2
√

2
√

2
=
√

2
2

= 2

But since 2 is rational, we have shown that for x =
√

2
√

2
and y =

√
2,

we have that xy is rational
We have thus shown that in any case there exist some irrational
numbers x and y such that xy is rational
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Disproving ∀x P(x) with a counter-example

¬∀x P(x) is equivalent to ∃x ¬P(x)

To establish that ¬∀x P(x) is true find a w such that P(w) is false

So, w is a counterexample to the assertion ∀x P(x)
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Every positive integer is the sum of the squares of 3
integers

The integer 7 is a counterexample. So the claim is false
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Nested quantifiers
Every real number has an inverse w.r.t addition (domain R)

∀x ∃y (x + y = 0)

Every real number except zero has an inverse w.r.t multiplication

∀x (x 6= 0 → ∃y (x × y = 1)

limx→af (x) = b

∀ε ∃δ ∀x (0 < |x − a| < δ → |f (x)− b| < ε)

¬(limx→af (x) = b)

∃ε ∀δ ∃x ((0 < |x − a| < δ) ∧ (|f (x)− b| ≥ ε))
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