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Algorithms

Definition
An algorithm is a finite sequence of precise instructions for performing
a computation or for solving a problem

Problem Given n > 1 find its prime factorisation

765 = 3 · 3 · 5 · 17 = 32 · 5 · 17
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Use the sieve of Eratosthenes

Find all primes between 2 and n

1 Write the numbers 2, . . . , n into a list. Let i := 2
2 Remove all strict multiples of i from the list
3 Let k be the smallest number present in the list s.t. k > i and let

i := k
4 If i >

√
n then stop else go to step 2

Using repeated division, compute prime factorisation of n from list of
primes

Is there a quicker algorithm? WHAT DOES THIS MEAN?
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Properties of an algorithm

Input: it has input values from specified sets

Output: from the input values, it produces the output values from
specified sets which are the solution
Correct: it should produce the correct output values for each set of
input values
Finite: it should produce the output after a finite number of steps
for any input
Effective: it must be possible to perform each step correctly and in
a finite amount of time
Generality: it should work for all problems of the desired form
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Recursive algorithm

Euclidian algorithm

algorithm gcd(x,y)
if y = 0
then return(x)
else return(gcd(y,x mod y))
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Euclidian algorithm (proof of correctness)

Lemma
If a = bq + r , where a, b, q, and r are positive integers, then
gcd(a, b) = gcd(b, r)

Proof.
(⇒) Suppose that d divides both a and b. Then d also divides
a− bq = r . Hence, any common divisor of a and b must also be a
common divisor of b and r
(⇐) Suppose that d divides both b and r . Then d also divides
bq + r = a. Hence, any common divisor of b and r must also be a
common divisor of a and b.
Therefore, gcd(a, b) = gcd(b, r)
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Description of algorithms in pseudocode

Intermediate step between English prose and formal coding in a
programming language

Focus on the fundamental operation of the program, instead of
peculiarities of a given programming language

Analyze the time required to solve a problem using an algorithm,
independent of the actual programming language
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Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a1, . . . , an

Output ak , k ∈ {1, . . . , n}, where for all j ∈ {1, . . . , n}, aj ≤ ak

procedure maximum(a1,...,an)
max:=a1
for i:=2 to n

if max< ai
then max:=ai

return max

How to prove correctness?
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Linear search

Describe an algorithm for locating an item in a sequence of integers

Input integer x and finite sequence of distinct integers a1, . . . , an

Output integer i ∈ {0, . . . , n} where ai = x or i = 0 if x 6= aj for all aj

procedure linear_search(x,a1, . . . ,an)
i:=1
while i≤n and x6= ai

i:=i+1
if i≤n
then location:=i
else location:=0
return location
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Binary search

An algorithm for locating an item in an ordered sequence of integers

Input integer x and finite sequence of increasing integers a1, . . . , an

Output integer i ∈ {0, . . . , n} where ai = x or i = 0 if x 6= aj for all aj

Make use of property that sequence is of increasing integers
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Binary search

procedure binary_search(x,a1, . . . ,an)
i:=1
j:=n
while i<j

m:=b(i + j)/2c
if x> am
then i:=m+1
else j:=m

if x= ai
then location:=i
else location:=0
return location
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Big-O notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is O(g) if there is a constant k
and a positive constant c such that

∀x > k (|f (x)| ≤ c|g(x)|)

c and k are witnesses to the relationship between f and g
O(g) is the set of all functions f that satisfy the condition above: it
would be formally correct to write f ∈ O(g)

Often the condition is: ∀x > k (f (x) ≤ cg(x))
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Examples

f (x) = x2 + 2x + 1

Show f (x) is O(g) where g(x) = x2

Show f (x) is also O(g) where g(x) = x3

Show f (x) is not O(h) where h(x) = x
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Examples

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is O(xn)

f (x) = 1 + 2 + . . . + x is O(x2)

log(n) is O(n)

n! = 1× 2× · · · × n is O(nn)

log(n!) is O(n log(n))
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Big-Omega notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Ω(g) if there if there is a
constant k and a positive constant c such that

∀x > k (|f (x)| ≥ c|g(x)|)

c and k are witnesses to the relationship between f and g
Big-O gives an upper bound on the growth of a function, while
Big-Omega gives a lower bound
Often the condition is: ∀x > k (f (x) ≥ cg(x))

f is Ω(g) if and only if g is O(f )
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Big-Omega notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Ω(g) if there if there is a
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Big-Theta notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Θ(g) iff f is O(g) and Ω(g)

f and g are of the same order
f is Θ(g) iff there exists constants c1, c2 and k such that

for all x > k(c1|g(x)| ≤ |f (x)| ≤ c2|g(x)|)

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is Θ(xn) if an 6= 0

f (x) = 1 + 2 + . . . + x is Θ(x2)
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Complexity of algorithms

Given an algorithm, how efficient is it for solving the problem
relative to input size?

How much time does it take or how much computer memory does
it need
We measure time complexity in terms of the number of basic
operations executed and use big-O and big-Theta notation to
estimate it
Focus on worst-case time complexity. Derive an upper bound on
the number of operations it uses to solve a problem with input of
particular size (as opposed to the average-case complexity)
Compute an f (n) as worst case for input size n
Compare efficiency of different algorithms for the same problem
For factorisation input size of integer n is its binary representation
log n
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Growth
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Linear search

procedure linear_search(x,a1, . . . ,an)
i:=1
while i≤n and x6= ai

i:=i+1
if i≤n
then location:=i
else location:=0
return location
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Worst-Case complexity of linear search

Count the number of comparisons

at each step two comparisons are made i ≤ n and x 6= ai

to end the loop, one comparison i ≤ n is made
after the loop, one more i ≤ n comparison is made
If x = ai , 2i + 1 comparisons are used
If x is not in the list, 2n + 2 comparisons are made which is the
worst case
This means that the complexity is Θ(n)
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Binary search

procedure binary_search(x,a1, . . . ,an)
i:=1
j:=n
while i<j

m:=b(i + j)/2c
if x> am
then i:=m+1
else j:=m

if x= ai
then location:=i
else location:=0
return location
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Worst-Case complexity of binary search

Assume (for simplicity) n = 2k ; so k = log2n

Two comparisons are made at each stage i < j and x > am

At the first iteration the size of the list is 2k ; after the first iteration it
is 2k−1. Then 2k−2 and so on until the size of the list is 21 = 2
At the last step, a comparison tells us that the size of the list is
20 = 1 and the element is compared with the single remaining
element
Hence, at most 2k + 2 = 2log2n + 2 comparisons are made
This means that complexity is Θ(log n)
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Computer time
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Further topics
An algorithm is polynomial time if for some k it is Θ(nk )

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete
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