
Discrete Mathematics & Mathematical Reasoning
Algorithms

Colin Stirling

Informatics

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 1 / 24

Algorithms

Definition
An algorithm is a finite sequence of precise instructions for performing
a computation or for solving a problem

Problem Given n > 1 find its prime factorisation

765 = 3 · 3 · 5 · 17 = 32 · 5 · 17

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 2 / 24

Algorithms

Definition
An algorithm is a finite sequence of precise instructions for performing
a computation or for solving a problem

Problem Given n > 1 find its prime factorisation

765 = 3 · 3 · 5 · 17 = 32 · 5 · 17

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 2 / 24

Algorithms

Definition
An algorithm is a finite sequence of precise instructions for performing
a computation or for solving a problem

Problem Given n > 1 find its prime factorisation

765 = 3 · 3 · 5 · 17 = 32 · 5 · 17

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 2 / 24

Use the sieve of Eratosthenes

Find all primes between 2 and n

1 Write the numbers 2, . . . , n into a list. Let i := 2
2 Remove all strict multiples of i from the list
3 Let k be the smallest number present in the list s.t. k > i and let

i := k
4 If i >

√
n then stop else go to step 2

Using repeated division, compute prime factorisation of n from list of
primes

Is there a quicker algorithm? WHAT DOES THIS MEAN?

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 3 / 24

Use the sieve of Eratosthenes

Find all primes between 2 and n

1 Write the numbers 2, . . . , n into a list. Let i := 2
2 Remove all strict multiples of i from the list
3 Let k be the smallest number present in the list s.t. k > i and let

i := k
4 If i >

√
n then stop else go to step 2

Using repeated division, compute prime factorisation of n from list of
primes

Is there a quicker algorithm? WHAT DOES THIS MEAN?

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 3 / 24

Use the sieve of Eratosthenes

Find all primes between 2 and n

1 Write the numbers 2, . . . , n into a list. Let i := 2
2 Remove all strict multiples of i from the list
3 Let k be the smallest number present in the list s.t. k > i and let

i := k
4 If i >

√
n then stop else go to step 2

Using repeated division, compute prime factorisation of n from list of
primes

Is there a quicker algorithm? WHAT DOES THIS MEAN?

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 3 / 24

Use the sieve of Eratosthenes

Find all primes between 2 and n

1 Write the numbers 2, . . . , n into a list. Let i := 2
2 Remove all strict multiples of i from the list
3 Let k be the smallest number present in the list s.t. k > i and let

i := k
4 If i >

√
n then stop else go to step 2

Using repeated division, compute prime factorisation of n from list of
primes

Is there a quicker algorithm? WHAT DOES THIS MEAN?

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 3 / 24

Properties of an algorithm

Input: it has input values from specified sets

Output: from the input values, it produces the output values from
specified sets which are the solution
Correct: it should produce the correct output values for each set of
input values
Finite: it should produce the output after a finite number of steps
for any input
Effective: it must be possible to perform each step correctly and in
a finite amount of time
Generality: it should work for all problems of the desired form

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 4 / 24

Properties of an algorithm

Input: it has input values from specified sets
Output: from the input values, it produces the output values from
specified sets which are the solution

Correct: it should produce the correct output values for each set of
input values
Finite: it should produce the output after a finite number of steps
for any input
Effective: it must be possible to perform each step correctly and in
a finite amount of time
Generality: it should work for all problems of the desired form

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 4 / 24

Properties of an algorithm

Input: it has input values from specified sets
Output: from the input values, it produces the output values from
specified sets which are the solution
Correct: it should produce the correct output values for each set of
input values

Finite: it should produce the output after a finite number of steps
for any input
Effective: it must be possible to perform each step correctly and in
a finite amount of time
Generality: it should work for all problems of the desired form

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 4 / 24

Properties of an algorithm

Input: it has input values from specified sets
Output: from the input values, it produces the output values from
specified sets which are the solution
Correct: it should produce the correct output values for each set of
input values
Finite: it should produce the output after a finite number of steps
for any input

Effective: it must be possible to perform each step correctly and in
a finite amount of time
Generality: it should work for all problems of the desired form

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 4 / 24

Properties of an algorithm

Input: it has input values from specified sets
Output: from the input values, it produces the output values from
specified sets which are the solution
Correct: it should produce the correct output values for each set of
input values
Finite: it should produce the output after a finite number of steps
for any input
Effective: it must be possible to perform each step correctly and in
a finite amount of time

Generality: it should work for all problems of the desired form

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 4 / 24

Properties of an algorithm

Input: it has input values from specified sets
Output: from the input values, it produces the output values from
specified sets which are the solution
Correct: it should produce the correct output values for each set of
input values
Finite: it should produce the output after a finite number of steps
for any input
Effective: it must be possible to perform each step correctly and in
a finite amount of time
Generality: it should work for all problems of the desired form

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 4 / 24

Recursive algorithm

Euclidian algorithm

algorithm gcd(x,y)
if y = 0
then return(x)
else return(gcd(y,x mod y))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 5 / 24

Euclidian algorithm (proof of correctness)

Lemma
If a = bq + r , where a, b, q, and r are positive integers, then
gcd(a, b) = gcd(b, r)

Proof.
(⇒) Suppose that d divides both a and b. Then d also divides
a− bq = r . Hence, any common divisor of a and b must also be a
common divisor of b and r
(⇐) Suppose that d divides both b and r . Then d also divides
bq + r = a. Hence, any common divisor of b and r must also be a
common divisor of a and b.
Therefore, gcd(a, b) = gcd(b, r)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 6 / 24

Euclidian algorithm (proof of correctness)

Lemma
If a = bq + r , where a, b, q, and r are positive integers, then
gcd(a, b) = gcd(b, r)

Proof.
(⇒) Suppose that d divides both a and b. Then d also divides
a− bq = r . Hence, any common divisor of a and b must also be a
common divisor of b and r
(⇐) Suppose that d divides both b and r . Then d also divides
bq + r = a. Hence, any common divisor of b and r must also be a
common divisor of a and b.
Therefore, gcd(a, b) = gcd(b, r)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 6 / 24

Description of algorithms in pseudocode

Intermediate step between English prose and formal coding in a
programming language

Focus on the fundamental operation of the program, instead of
peculiarities of a given programming language

Analyze the time required to solve a problem using an algorithm,
independent of the actual programming language

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 7 / 24

Description of algorithms in pseudocode

Intermediate step between English prose and formal coding in a
programming language

Focus on the fundamental operation of the program, instead of
peculiarities of a given programming language

Analyze the time required to solve a problem using an algorithm,
independent of the actual programming language

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 7 / 24

Description of algorithms in pseudocode

Intermediate step between English prose and formal coding in a
programming language

Focus on the fundamental operation of the program, instead of
peculiarities of a given programming language

Analyze the time required to solve a problem using an algorithm,
independent of the actual programming language

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 7 / 24

Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a1, . . . , an

Output ak , k ∈ {1, . . . , n}, where for all j ∈ {1, . . . , n}, aj ≤ ak

procedure maximum(a1,...,an)
max:=a1
for i:=2 to n

if max< ai
then max:=ai

return max

How to prove correctness?

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 8 / 24

Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a1, . . . , an

Output ak , k ∈ {1, . . . , n}, where for all j ∈ {1, . . . , n}, aj ≤ ak

procedure maximum(a1,...,an)
max:=a1
for i:=2 to n

if max< ai
then max:=ai

return max

How to prove correctness?

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 8 / 24

Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a1, . . . , an

Output ak , k ∈ {1, . . . , n}, where for all j ∈ {1, . . . , n}, aj ≤ ak

procedure maximum(a1,...,an)
max:=a1
for i:=2 to n

if max< ai
then max:=ai

return max

How to prove correctness?

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 8 / 24

Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a1, . . . , an

Output ak , k ∈ {1, . . . , n}, where for all j ∈ {1, . . . , n}, aj ≤ ak

procedure maximum(a1,...,an)
max:=a1
for i:=2 to n

if max< ai
then max:=ai

return max

How to prove correctness?

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 8 / 24

Maximum

Find the maximum value in a finite sequence of integers

Input finite sequence of integers a1, . . . , an

Output ak , k ∈ {1, . . . , n}, where for all j ∈ {1, . . . , n}, aj ≤ ak

procedure maximum(a1,...,an)
max:=a1
for i:=2 to n

if max< ai
then max:=ai

return max

How to prove correctness?

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 8 / 24

Linear search

Describe an algorithm for locating an item in a sequence of integers

Input integer x and finite sequence of distinct integers a1, . . . , an

Output integer i ∈ {0, . . . , n} where ai = x or i = 0 if x 6= aj for all aj

procedure linear_search(x,a1, . . . ,an)
i:=1
while i≤n and x6= ai

i:=i+1
if i≤n
then location:=i
else location:=0
return location

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 9 / 24

Linear search

Describe an algorithm for locating an item in a sequence of integers

Input integer x and finite sequence of distinct integers a1, . . . , an

Output integer i ∈ {0, . . . , n} where ai = x or i = 0 if x 6= aj for all aj

procedure linear_search(x,a1, . . . ,an)
i:=1
while i≤n and x6= ai

i:=i+1
if i≤n
then location:=i
else location:=0
return location

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 9 / 24

Linear search

Describe an algorithm for locating an item in a sequence of integers

Input integer x and finite sequence of distinct integers a1, . . . , an

Output integer i ∈ {0, . . . , n} where ai = x or i = 0 if x 6= aj for all aj

procedure linear_search(x,a1, . . . ,an)
i:=1
while i≤n and x6= ai

i:=i+1
if i≤n
then location:=i
else location:=0
return location

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 9 / 24

Binary search

An algorithm for locating an item in an ordered sequence of integers

Input integer x and finite sequence of increasing integers a1, . . . , an

Output integer i ∈ {0, . . . , n} where ai = x or i = 0 if x 6= aj for all aj

Make use of property that sequence is of increasing integers

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 10 / 24

Binary search

An algorithm for locating an item in an ordered sequence of integers

Input integer x and finite sequence of increasing integers a1, . . . , an

Output integer i ∈ {0, . . . , n} where ai = x or i = 0 if x 6= aj for all aj

Make use of property that sequence is of increasing integers

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 10 / 24

Binary search

An algorithm for locating an item in an ordered sequence of integers

Input integer x and finite sequence of increasing integers a1, . . . , an

Output integer i ∈ {0, . . . , n} where ai = x or i = 0 if x 6= aj for all aj

Make use of property that sequence is of increasing integers

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 10 / 24

Binary search

An algorithm for locating an item in an ordered sequence of integers

Input integer x and finite sequence of increasing integers a1, . . . , an

Output integer i ∈ {0, . . . , n} where ai = x or i = 0 if x 6= aj for all aj

Make use of property that sequence is of increasing integers

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 10 / 24

Binary search

procedure binary_search(x,a1, . . . ,an)
i:=1
j:=n
while i<j

m:=b(i + j)/2c
if x> am
then i:=m+1
else j:=m

if x= ai
then location:=i
else location:=0
return location

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 11 / 24

Big-O notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is O(g) if there is a constant k
and a positive constant c such that

∀x > k (|f (x)| ≤ c|g(x)|)

c and k are witnesses to the relationship between f and g
O(g) is the set of all functions f that satisfy the condition above: it
would be formally correct to write f ∈ O(g)

Often the condition is: ∀x > k (f (x) ≤ cg(x))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 12 / 24

Big-O notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is O(g) if there is a constant k
and a positive constant c such that

∀x > k (|f (x)| ≤ c|g(x)|)

c and k are witnesses to the relationship between f and g

O(g) is the set of all functions f that satisfy the condition above: it
would be formally correct to write f ∈ O(g)

Often the condition is: ∀x > k (f (x) ≤ cg(x))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 12 / 24

Big-O notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is O(g) if there is a constant k
and a positive constant c such that

∀x > k (|f (x)| ≤ c|g(x)|)

c and k are witnesses to the relationship between f and g
O(g) is the set of all functions f that satisfy the condition above: it
would be formally correct to write f ∈ O(g)

Often the condition is: ∀x > k (f (x) ≤ cg(x))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 12 / 24

Big-O notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is O(g) if there is a constant k
and a positive constant c such that

∀x > k (|f (x)| ≤ c|g(x)|)

c and k are witnesses to the relationship between f and g
O(g) is the set of all functions f that satisfy the condition above: it
would be formally correct to write f ∈ O(g)

Often the condition is: ∀x > k (f (x) ≤ cg(x))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 12 / 24

Examples

f (x) = x2 + 2x + 1

Show f (x) is O(g) where g(x) = x2

Show f (x) is also O(g) where g(x) = x3

Show f (x) is not O(h) where h(x) = x

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 13 / 24

Examples

f (x) = x2 + 2x + 1

Show f (x) is O(g) where g(x) = x2

Show f (x) is also O(g) where g(x) = x3

Show f (x) is not O(h) where h(x) = x

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 13 / 24

Examples

f (x) = x2 + 2x + 1

Show f (x) is O(g) where g(x) = x2

Show f (x) is also O(g) where g(x) = x3

Show f (x) is not O(h) where h(x) = x

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 13 / 24

Examples

f (x) = x2 + 2x + 1

Show f (x) is O(g) where g(x) = x2

Show f (x) is also O(g) where g(x) = x3

Show f (x) is not O(h) where h(x) = x

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 13 / 24

Examples

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is O(xn)

f (x) = 1 + 2 + . . . + x is O(x2)

log(n) is O(n)

n! = 1× 2× · · · × n is O(nn)

log(n!) is O(n log(n))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 14 / 24

Examples

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is O(xn)

f (x) = 1 + 2 + . . . + x is O(x2)

log(n) is O(n)

n! = 1× 2× · · · × n is O(nn)

log(n!) is O(n log(n))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 14 / 24

Examples

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is O(xn)

f (x) = 1 + 2 + . . . + x is O(x2)

log(n) is O(n)

n! = 1× 2× · · · × n is O(nn)

log(n!) is O(n log(n))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 14 / 24

Examples

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is O(xn)

f (x) = 1 + 2 + . . . + x is O(x2)

log(n) is O(n)

n! = 1× 2× · · · × n is O(nn)

log(n!) is O(n log(n))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 14 / 24

Examples

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is O(xn)

f (x) = 1 + 2 + . . . + x is O(x2)

log(n) is O(n)

n! = 1× 2× · · · × n is O(nn)

log(n!) is O(n log(n))

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 14 / 24

Big-Omega notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Ω(g) if there if there is a
constant k and a positive constant c such that

∀x > k (|f (x)| ≥ c|g(x)|)

c and k are witnesses to the relationship between f and g
Big-O gives an upper bound on the growth of a function, while
Big-Omega gives a lower bound
Often the condition is: ∀x > k (f (x) ≥ cg(x))

f is Ω(g) if and only if g is O(f)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 15 / 24

Big-Omega notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Ω(g) if there if there is a
constant k and a positive constant c such that

∀x > k (|f (x)| ≥ c|g(x)|)

c and k are witnesses to the relationship between f and g

Big-O gives an upper bound on the growth of a function, while
Big-Omega gives a lower bound
Often the condition is: ∀x > k (f (x) ≥ cg(x))

f is Ω(g) if and only if g is O(f)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 15 / 24

Big-Omega notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Ω(g) if there if there is a
constant k and a positive constant c such that

∀x > k (|f (x)| ≥ c|g(x)|)

c and k are witnesses to the relationship between f and g
Big-O gives an upper bound on the growth of a function, while
Big-Omega gives a lower bound

Often the condition is: ∀x > k (f (x) ≥ cg(x))

f is Ω(g) if and only if g is O(f)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 15 / 24

Big-Omega notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Ω(g) if there if there is a
constant k and a positive constant c such that

∀x > k (|f (x)| ≥ c|g(x)|)

c and k are witnesses to the relationship between f and g
Big-O gives an upper bound on the growth of a function, while
Big-Omega gives a lower bound
Often the condition is: ∀x > k (f (x) ≥ cg(x))

f is Ω(g) if and only if g is O(f)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 15 / 24

Big-Omega notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Ω(g) if there if there is a
constant k and a positive constant c such that

∀x > k (|f (x)| ≥ c|g(x)|)

c and k are witnesses to the relationship between f and g
Big-O gives an upper bound on the growth of a function, while
Big-Omega gives a lower bound
Often the condition is: ∀x > k (f (x) ≥ cg(x))

f is Ω(g) if and only if g is O(f)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 15 / 24

Big-Theta notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Θ(g) iff f is O(g) and Ω(g)

f and g are of the same order
f is Θ(g) iff there exists constants c1, c2 and k such that

for all x > k(c1|g(x)| ≤ |f (x)| ≤ c2|g(x)|)

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is Θ(xn) if an 6= 0

f (x) = 1 + 2 + . . . + x is Θ(x2)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 16 / 24

Big-Theta notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Θ(g) iff f is O(g) and Ω(g)

f and g are of the same order

f is Θ(g) iff there exists constants c1, c2 and k such that

for all x > k(c1|g(x)| ≤ |f (x)| ≤ c2|g(x)|)

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is Θ(xn) if an 6= 0

f (x) = 1 + 2 + . . . + x is Θ(x2)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 16 / 24

Big-Theta notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Θ(g) iff f is O(g) and Ω(g)

f and g are of the same order
f is Θ(g) iff there exists constants c1, c2 and k such that

for all x > k(c1|g(x)| ≤ |f (x)| ≤ c2|g(x)|)

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is Θ(xn) if an 6= 0

f (x) = 1 + 2 + . . . + x is Θ(x2)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 16 / 24

Big-Theta notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Θ(g) iff f is O(g) and Ω(g)

f and g are of the same order
f is Θ(g) iff there exists constants c1, c2 and k such that

for all x > k(c1|g(x)| ≤ |f (x)| ≤ c2|g(x)|)

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is Θ(xn) if an 6= 0

f (x) = 1 + 2 + . . . + x is Θ(x2)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 16 / 24

Big-Theta notation for function growth

Definition
Let f , g : N→ R or f , g : R→ R. Then f is Θ(g) iff f is O(g) and Ω(g)

f and g are of the same order
f is Θ(g) iff there exists constants c1, c2 and k such that

for all x > k(c1|g(x)| ≤ |f (x)| ≤ c2|g(x)|)

f (x) = anxn + an−1xn−1 + . . . + a1x + a0 is Θ(xn) if an 6= 0

f (x) = 1 + 2 + . . . + x is Θ(x2)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 16 / 24

Complexity of algorithms

Given an algorithm, how efficient is it for solving the problem
relative to input size?

How much time does it take or how much computer memory does
it need
We measure time complexity in terms of the number of basic
operations executed and use big-O and big-Theta notation to
estimate it
Focus on worst-case time complexity. Derive an upper bound on
the number of operations it uses to solve a problem with input of
particular size (as opposed to the average-case complexity)
Compute an f (n) as worst case for input size n
Compare efficiency of different algorithms for the same problem
For factorisation input size of integer n is its binary representation
log n

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 17 / 24

Complexity of algorithms

Given an algorithm, how efficient is it for solving the problem
relative to input size?
How much time does it take or how much computer memory does
it need

We measure time complexity in terms of the number of basic
operations executed and use big-O and big-Theta notation to
estimate it
Focus on worst-case time complexity. Derive an upper bound on
the number of operations it uses to solve a problem with input of
particular size (as opposed to the average-case complexity)
Compute an f (n) as worst case for input size n
Compare efficiency of different algorithms for the same problem
For factorisation input size of integer n is its binary representation
log n

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 17 / 24

Complexity of algorithms

Given an algorithm, how efficient is it for solving the problem
relative to input size?
How much time does it take or how much computer memory does
it need
We measure time complexity in terms of the number of basic
operations executed and use big-O and big-Theta notation to
estimate it

Focus on worst-case time complexity. Derive an upper bound on
the number of operations it uses to solve a problem with input of
particular size (as opposed to the average-case complexity)
Compute an f (n) as worst case for input size n
Compare efficiency of different algorithms for the same problem
For factorisation input size of integer n is its binary representation
log n

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 17 / 24

Complexity of algorithms

Given an algorithm, how efficient is it for solving the problem
relative to input size?
How much time does it take or how much computer memory does
it need
We measure time complexity in terms of the number of basic
operations executed and use big-O and big-Theta notation to
estimate it
Focus on worst-case time complexity. Derive an upper bound on
the number of operations it uses to solve a problem with input of
particular size (as opposed to the average-case complexity)

Compute an f (n) as worst case for input size n
Compare efficiency of different algorithms for the same problem
For factorisation input size of integer n is its binary representation
log n

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 17 / 24

Complexity of algorithms

Given an algorithm, how efficient is it for solving the problem
relative to input size?
How much time does it take or how much computer memory does
it need
We measure time complexity in terms of the number of basic
operations executed and use big-O and big-Theta notation to
estimate it
Focus on worst-case time complexity. Derive an upper bound on
the number of operations it uses to solve a problem with input of
particular size (as opposed to the average-case complexity)
Compute an f (n) as worst case for input size n

Compare efficiency of different algorithms for the same problem
For factorisation input size of integer n is its binary representation
log n

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 17 / 24

Complexity of algorithms

Given an algorithm, how efficient is it for solving the problem
relative to input size?
How much time does it take or how much computer memory does
it need
We measure time complexity in terms of the number of basic
operations executed and use big-O and big-Theta notation to
estimate it
Focus on worst-case time complexity. Derive an upper bound on
the number of operations it uses to solve a problem with input of
particular size (as opposed to the average-case complexity)
Compute an f (n) as worst case for input size n
Compare efficiency of different algorithms for the same problem

For factorisation input size of integer n is its binary representation
log n

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 17 / 24

Complexity of algorithms

Given an algorithm, how efficient is it for solving the problem
relative to input size?
How much time does it take or how much computer memory does
it need
We measure time complexity in terms of the number of basic
operations executed and use big-O and big-Theta notation to
estimate it
Focus on worst-case time complexity. Derive an upper bound on
the number of operations it uses to solve a problem with input of
particular size (as opposed to the average-case complexity)
Compute an f (n) as worst case for input size n
Compare efficiency of different algorithms for the same problem
For factorisation input size of integer n is its binary representation
log n

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 17 / 24

Growth

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 18 / 24

Linear search

procedure linear_search(x,a1, . . . ,an)
i:=1
while i≤n and x6= ai

i:=i+1
if i≤n
then location:=i
else location:=0
return location

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 19 / 24

Worst-Case complexity of linear search

Count the number of comparisons

at each step two comparisons are made i ≤ n and x 6= ai

to end the loop, one comparison i ≤ n is made
after the loop, one more i ≤ n comparison is made
If x = ai , 2i + 1 comparisons are used
If x is not in the list, 2n + 2 comparisons are made which is the
worst case
This means that the complexity is Θ(n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 20 / 24

Worst-Case complexity of linear search

Count the number of comparisons
at each step two comparisons are made i ≤ n and x 6= ai

to end the loop, one comparison i ≤ n is made
after the loop, one more i ≤ n comparison is made
If x = ai , 2i + 1 comparisons are used
If x is not in the list, 2n + 2 comparisons are made which is the
worst case
This means that the complexity is Θ(n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 20 / 24

Worst-Case complexity of linear search

Count the number of comparisons
at each step two comparisons are made i ≤ n and x 6= ai

to end the loop, one comparison i ≤ n is made

after the loop, one more i ≤ n comparison is made
If x = ai , 2i + 1 comparisons are used
If x is not in the list, 2n + 2 comparisons are made which is the
worst case
This means that the complexity is Θ(n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 20 / 24

Worst-Case complexity of linear search

Count the number of comparisons
at each step two comparisons are made i ≤ n and x 6= ai

to end the loop, one comparison i ≤ n is made
after the loop, one more i ≤ n comparison is made

If x = ai , 2i + 1 comparisons are used
If x is not in the list, 2n + 2 comparisons are made which is the
worst case
This means that the complexity is Θ(n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 20 / 24

Worst-Case complexity of linear search

Count the number of comparisons
at each step two comparisons are made i ≤ n and x 6= ai

to end the loop, one comparison i ≤ n is made
after the loop, one more i ≤ n comparison is made
If x = ai , 2i + 1 comparisons are used

If x is not in the list, 2n + 2 comparisons are made which is the
worst case
This means that the complexity is Θ(n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 20 / 24

Worst-Case complexity of linear search

Count the number of comparisons
at each step two comparisons are made i ≤ n and x 6= ai

to end the loop, one comparison i ≤ n is made
after the loop, one more i ≤ n comparison is made
If x = ai , 2i + 1 comparisons are used
If x is not in the list, 2n + 2 comparisons are made which is the
worst case

This means that the complexity is Θ(n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 20 / 24

Worst-Case complexity of linear search

Count the number of comparisons
at each step two comparisons are made i ≤ n and x 6= ai

to end the loop, one comparison i ≤ n is made
after the loop, one more i ≤ n comparison is made
If x = ai , 2i + 1 comparisons are used
If x is not in the list, 2n + 2 comparisons are made which is the
worst case
This means that the complexity is Θ(n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 20 / 24

Binary search

procedure binary_search(x,a1, . . . ,an)
i:=1
j:=n
while i<j

m:=b(i + j)/2c
if x> am
then i:=m+1
else j:=m

if x= ai
then location:=i
else location:=0
return location

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 21 / 24

Worst-Case complexity of binary search

Assume (for simplicity) n = 2k ; so k = log2n

Two comparisons are made at each stage i < j and x > am

At the first iteration the size of the list is 2k ; after the first iteration it
is 2k−1. Then 2k−2 and so on until the size of the list is 21 = 2
At the last step, a comparison tells us that the size of the list is
20 = 1 and the element is compared with the single remaining
element
Hence, at most 2k + 2 = 2log2n + 2 comparisons are made
This means that complexity is Θ(log n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 22 / 24

Worst-Case complexity of binary search

Assume (for simplicity) n = 2k ; so k = log2n
Two comparisons are made at each stage i < j and x > am

At the first iteration the size of the list is 2k ; after the first iteration it
is 2k−1. Then 2k−2 and so on until the size of the list is 21 = 2
At the last step, a comparison tells us that the size of the list is
20 = 1 and the element is compared with the single remaining
element
Hence, at most 2k + 2 = 2log2n + 2 comparisons are made
This means that complexity is Θ(log n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 22 / 24

Worst-Case complexity of binary search

Assume (for simplicity) n = 2k ; so k = log2n
Two comparisons are made at each stage i < j and x > am

At the first iteration the size of the list is 2k ; after the first iteration it
is 2k−1. Then 2k−2 and so on until the size of the list is 21 = 2

At the last step, a comparison tells us that the size of the list is
20 = 1 and the element is compared with the single remaining
element
Hence, at most 2k + 2 = 2log2n + 2 comparisons are made
This means that complexity is Θ(log n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 22 / 24

Worst-Case complexity of binary search

Assume (for simplicity) n = 2k ; so k = log2n
Two comparisons are made at each stage i < j and x > am

At the first iteration the size of the list is 2k ; after the first iteration it
is 2k−1. Then 2k−2 and so on until the size of the list is 21 = 2
At the last step, a comparison tells us that the size of the list is
20 = 1 and the element is compared with the single remaining
element

Hence, at most 2k + 2 = 2log2n + 2 comparisons are made
This means that complexity is Θ(log n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 22 / 24

Worst-Case complexity of binary search

Assume (for simplicity) n = 2k ; so k = log2n
Two comparisons are made at each stage i < j and x > am

At the first iteration the size of the list is 2k ; after the first iteration it
is 2k−1. Then 2k−2 and so on until the size of the list is 21 = 2
At the last step, a comparison tells us that the size of the list is
20 = 1 and the element is compared with the single remaining
element
Hence, at most 2k + 2 = 2log2n + 2 comparisons are made

This means that complexity is Θ(log n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 22 / 24

Worst-Case complexity of binary search

Assume (for simplicity) n = 2k ; so k = log2n
Two comparisons are made at each stage i < j and x > am

At the first iteration the size of the list is 2k ; after the first iteration it
is 2k−1. Then 2k−2 and so on until the size of the list is 21 = 2
At the last step, a comparison tells us that the size of the list is
20 = 1 and the element is compared with the single remaining
element
Hence, at most 2k + 2 = 2log2n + 2 comparisons are made
This means that complexity is Θ(log n)

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 22 / 24

Computer time

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 23 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)

Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it

Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas

Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?

If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP

There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?

We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)

It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

Further topics
An algorithm is polynomial time if for some k it is Θ(nk)

Tractable problem: there is a polynomial time algorithm that solves
it. (Class P is tractable problems)
Intractable problem: there is no polynomial time algorithm that
solves it
Class NP with P ⊆ NP and which has complete problems such as
satisfiability of boolean formulas
Open problem: NP ⊆ P ?
If there is a polynomial time algorithm for any NP complete
problem then P = NP
There are quick algorithms for testing whether a large integer is
prime O((log n)6)

How hard is it to factorise integers?
We don’t know if it belongs to P (it is in NP)
It is very unlikely to be NP complete

Colin Stirling (Informatics) Discrete Mathematics (Chap 3) Today 24 / 24

