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Sequences

Sequences are ordered lists of elements

2,3,5,7,11,13,17,19,...or a,b,c,d,...,y,Z
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Sequences

Sequences are ordered lists of elements
2,3,5,7,11,13,17,19,...or a,b,c,d,...,y,Z

Definition

A sequence over a set S is a function f from a subset of the integers

(typically N or ZT) to the set S. If the domain of f is finite then the
sequence is finite
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence

1,1/2,1/3,1/4,...
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence

1,1/2,1/3, 1/4,...
Assuming a, = f(n), the sequence is also written ay, a, as, ...

oras {an}nez+
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence

1,1/2,1/3, 1/4,...
Assuming a, = f(n), the sequence is also written ay, a, as, ...

oras {an}nez+
g : N — Nis g(n) = n? defines the sequence

0,1,4,9,...
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Examples

f:Z* — Qis f(n) = 1/n defines the sequence

1,1/2,1/3, 1/4,...
Assuming a, = f(n), the sequence is also written ay, a, as, ...

oras {an}nez+
g : N — Nis g(n) = n? defines the sequence

0,1,4,9,...

Assuming b, = g(n), also written by, by, by, ...

oras {bn}neN
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form

a, ar, ar®, ar®,

n
..,ar", .
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form
a, ar, ar®, ar®, ..., ar", ...

@ Example {bp}nen With by = (—1)"
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form
a, ar, ar®, ar®, ..., ar", ...

@ Example {bp}nen With by = (—1)"

@ An arithmetic progression is a sequence of the form

a, a+d,a+2d,a+3d,...,a+nd, ...
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form
a, ar, ar®, ar®, ..., ar", ...

@ Example {bp}nen With by = (—1)"

@ An arithmetic progression is a sequence of the form

a, a+d,a+2d,a+3d,...,a+nd, ...

@ Example {cp}pen With ¢y, =7 — 3n
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Geometric and arithmetic progressions

@ A geometric progression is a sequence of the form
a, ar, ar®, ar®, ..., ar", ...

@ Example {bp}nen With by = (—1)"

@ An arithmetic progression is a sequence of the form

a, a+d,a+2d,a+3d,...,a+nd, ...

@ Example {cp}pen With ¢y, =7 — 3n

where the initial elements a, the common ratio r and the common
difference d are real numbers
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Recurrence relations

Definition
A recurrence relation for {an} ey is an equation that expresses a,, in
terms of one or more of the elements ag, ay, ..., an_1
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Recurrence relations

Definition
A recurrence relation for {an} ey is an equation that expresses a,, in
terms of one or more of the elements ag, ay, ..., an_1

@ Typically the recurrence relation expresses a,, in terms of just a
fixed number of previous elements (such as a, = g(an_1, an_2))
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Recurrence relations

Definition
A recurrence relation for {an} ey is an equation that expresses a,, in
terms of one or more of the elements ag, ay, ..., an_1

@ Typically the recurrence relation expresses a,, in terms of just a
fixed number of previous elements (such as a, = g(an_1, an_2))

@ The initial conditions specify the first elements of the sequence,
before the recurrence relation applies
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Recurrence relations

Definition
A recurrence relation for {an} ey is an equation that expresses a,, in
terms of one or more of the elements ag, ay, ..., an_1

@ Typically the recurrence relation expresses a,, in terms of just a
fixed number of previous elements (such as a, = g(an_1, an_2))

@ The initial conditions specify the first elements of the sequence,
before the recurrence relation applies

@ A sequence is called a solution of a recurrence relation iff its
terms satisfy the recurrence relation
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Rabbits and Fibonacci sequence

A young pair of rabbits (one of each sex) is placed on an island
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Rabbits and Fibonacci sequence

A young pair of rabbits (one of each sex) is placed on an island

A pair of rabbits does not breed until they are 2 months old. After they
are 2 months old each pair produces another pair each month
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Rabbits and Fibonacci sequence

A young pair of rabbits (one of each sex) is placed on an island

A pair of rabbits does not breed until they are 2 months old. After they
are 2 months old each pair produces another pair each month

Find a recurrence relation for number of rabbits after n months
assuming no rabbits die
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Rabbits and Fibonacci sequence

A young pair of rabbits (one of each sex) is placed on an island

A pair of rabbits does not breed until they are 2 months old. After they
are 2 months old each pair produces another pair each month

Find a recurrence relation for number of rabbits after n months
assuming no rabbits die

Answer is the Fibonacci sequence

f0) = 0
f(1) = 1
{ f(n) = f(n—1)+f(n—-2) forn>2

Yields the sequence 0,1, 1,2, 3,5, 8,13, ...

Colin Stirling (Informatics) Discrete Mathematics (Section 2.4) Today 6/14



Solving recurrence relations

@ Finding a formula for the n'" term of the sequence generated by a
recurrence relation is called solving the recurrence relation
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Solving recurrence relations

@ Finding a formula for the n'" term of the sequence generated by a
recurrence relation is called solving the recurrence relation

@ Such a formula is called a closed formula
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Solving recurrence relations

@ Finding a formula for the n'" term of the sequence generated by a
recurrence relation is called solving the recurrence relation

@ Such a formula is called a closed formula

@ Various more advanced methods for solving recurrence relations
are covered in Chapter 8 of the book (not part of this course)
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Solving recurrence relations

@ Finding a formula for the n'" term of the sequence generated by a
recurrence relation is called solving the recurrence relation

@ Such a formula is called a closed formula

@ Various more advanced methods for solving recurrence relations
are covered in Chapter 8 of the book (not part of this course)

@ Here we illustrate by example the method of iteration in which we
need to guess the formula
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Solving recurrence relations

@ Finding a formula for the n'" term of the sequence generated by a
recurrence relation is called solving the recurrence relation

@ Such a formula is called a closed formula

@ Various more advanced methods for solving recurrence relations
are covered in Chapter 8 of the book (not part of this course)

@ Here we illustrate by example the method of iteration in which we
need to guess the formula

@ The guess can be proved correct by the method of induction (to
be covered)
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lterative solution - working upwards

Forward substitution
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lterative solution - working upwards

Forward substitution

an = ap_1+3forn>2witha; =2
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lterative solution - working upwards

Forward substitution

an = ap_1+3forn>2witha; =2

a =

2+3
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lterative solution - working upwards

Forward substitution

an = ap_1+3forn>2witha; =2

a

2+3
as

(2+3)+3=2+3-2
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lterative solution - working upwards

Forward substitution

an = ap_1+3forn>2witha; =2

a = 2+3
as (2+3)+3=2+3-2
as (2+2-3)+3=2+3-3
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lterative solution - working upwards

Forward substitution

an=ap_1+3forn>2witha; =2

a = 2+3
as (2+3)+3=2+3-2
a, = (2+2-3)+3=2+3-3

an = ap-1+3=2+3-(n-2))+3=2+3-(n—-1)
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lterative solution - working downward

Backward substitution

Colin Stirling (Informatics)

Discrete Mathematics (Section 2.4)



lterative solution - working downward

Backward substitution

an

an = ap_1+3forn>2witha; =2

an_1 + 3
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lterative solution - working downward

Backward substitution

an = ap_1+3forn>2witha; =2
an

an_1 + 3

(an2+3)+3=a,2+3-2
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lterative solution - working downward

Backward substitution

an = ap_1+3forn>2witha; =2
an = ap-1+3

= (an_2+3)+3:a,,_2+3-2
= (ap-3+3)+3-2=a,3+3-3
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lterative solution - working downward

Backward substitution

an=ap_1+3forn>2witha; =2

an = ap-1+3
= (an_2+3)+3:a,,_2+3-2
= (ap-3+3)+3-2=a,3+3-3

— @ 3(N-2)=(a;+3)+3-(N—2)=2+3-(n—1)
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

@ Let P, denote amount after n years
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

@ Let P, denote amount after n years
[+ ) Pn == Pnf‘] +003 Pnf‘] == (103)Pn,‘|
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

@ Let P, denote amount after n years
o Pn - Pnf‘] + 003 Pnf‘] - (103)Pn,‘|
@ The initial condition Py = 1000.
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

@ Let P, denote amount after n years

@ P,=P, 1+003P,_ 1 = (1.03)P,_4

@ The initial condition Py = 1000.

@ P=(1.03)Py,..., Pr=(1.03)P,—1 =(1.03)"Py
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Compound interest

@ Suppose a person deposits £1000 in a savings account yielding
3% per year with interest compounded annually. How much is in
the account after 20 years?

@ Let P, denote amount after n years

@ P,=P, 1+003P,_ 1 = (1.03)P,_4

@ The initial condition Py = 1000.

@ P=(1.03)Py,..., Pr=(1.03)P,—1 =(1.03)"Py
@ Py, =(1.03)2°1000 = 1,806
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Common sequences

TABLE 1 Some Useful Sequences.
nth Term First 10 Terms

n? 1,4,9, 16, 25, 36, 49, 64, 81, 100, . ..
n3 1, 8,27, 64, 125,216, 343,512, 729, 1000, . . .
n* 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . ..
2" 2,4,8,16,32,64,128,256,512, 1024, ...
3n 3,9,27, 81,243,729, 2187, 6561, 19683, 59049, ...
n! 1,2, 6,24, 120, 720, 5040, 40320, 362880, 3628800, . ..
fn 1,1,2,3,5,8,13,21,34,55,89, ...

u]
]
I
ul
it
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Summations

Given a sequence {an}, the sum of terms anm, am1,

., apis
am+am+1+...+a[
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Summations

Given a sequence {ap}, the sum of terms an, am. 1,

., apis
am+am+1+...+a[

o > g

m<j<t
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Summations

Given a sequence {ap}, the sum of terms apm, amy1, ..., aris

an7'F an1+1 {-. ..-F éh

¢
dg o > g
j=m

m<j<t
The variable j is called the index of summation
More generally for an index set S

2.8

jes
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Useful summation formulas

TABLE 2 Some Useful Summation Formulae.

Sum Closed Form

" +1

3 ark r £0) ar'™ —a
Py r—1

n

Zk nn+1)
k= 2

n

Z K2 nn+1)Q2n+1)
k= 6

n

Zk3 n%(n + 1)?
oz 4

o

1

Zxk,|x| <1 1
k=0 -

e 1
kak_l,|x| <1 —
= 1—x)
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Products

Given a sequence {an}, the product of terms am, am1,

am‘am+1'...'ag

¢
I[Ia or
j=m

II &
More generally for a finite index set S one writes

, ayis

m<j<t

Ila

jes
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