Discrete Mathematics & Mathematical Reasoning Basic Structures: Sets, Functions and Relations

Colin Stirling

Informatics

Some slides based on ones by Myrto Arapinis

Colin Stirling (Informatics)

Discrete Mathematics (Chaps 2 & 9)

Today 1 / 24

Some important sets

```
 \begin{split} \mathbb{B} &= \{ true, false \} \text{ Boolean values} \\ \mathbb{N} &= \{ 0, 1, 2, 3, \dots \} \text{ Natural numbers} \\ \mathbb{Z} &= \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \} \text{ Integers} \\ \mathbb{Z}^+ &= \{ 1, 2, 3, \dots \} \text{ Positive integers} \\ \mathbb{R} \text{ Real numbers} \\ \mathbb{R}^+ \text{ Positive real numbers} \\ \mathbb{Q} \text{ Rational numbers} \end{split}
```

- $\ensuremath{\mathbb{C}}$ Complex numbers
- Ø Empty set

< 回 > < 回 > < 回 >

Sets defined using comprehension

• $S = \{x \mid P(x)\}$ where P(x) is a predicate

Sets defined using comprehension

- $S = \{x \mid P(x)\}$ where P(x) is a predicate
- Example Subsets of sets upon which an order is defined

$$\begin{array}{lll} [a,b] &=& \{x \mid a \leq x \leq b\} & \text{closed interval} \\ [a,b) &=& \{x \mid a \leq x < b\} \\ (a,b] &=& \{x \mid a < x \leq b\} \\ (a,b) &=& \{x \mid a < x < b\} & \text{open interval} \end{array}$$

A (1) > A (1) > A

• $x \in S$ membership

イロト イヨト イヨト イヨト

• $x \in S$ membership

• $A \cup B$ union; $A \cap B$ intersection; A - B difference

э

イロト イポト イヨト イヨト

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset
- *A* = *B* set equality

A (10) A (10)

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset
- *A* = *B* set equality
- $\mathcal{P}(A)$ powerset (set of all subsets of A); also 2^A

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset
- *A* = *B* set equality
- $\mathcal{P}(A)$ powerset (set of all subsets of A); also 2^A
- |A| cardinality

< 回 > < 回 > < 回 >

- $x \in S$ membership
- $A \cup B$ union; $A \cap B$ intersection; A B difference
- $A \subseteq B$ subset; $A \supseteq B$ superset
- *A* = *B* set equality
- $\mathcal{P}(A)$ powerset (set of all subsets of A); also 2^A
- |A| cardinality
- $A \times B$ cartesian product (tuple sets)

周 ト イ ヨ ト イ ヨ ト

A (10) > A (10) > A

• The set of cats is not a member of itself

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves
- $S = \{x \mid x \notin x\}$ (using naive comprehension)

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves
- $S = \{x \mid x \notin x\}$ (using naive comprehension)
- Question: is S a member of itself ($S \in S$) ?

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves
- $S = \{x \mid x \notin x\}$ (using naive comprehension)
- Question: is S a member of itself ($S \in S$) ?
- $S \in S$ provided that $S \notin S$; $S \notin S$ provided that $S \in S$

- The set of cats is not a member of itself
- The set of non-cats (all things that are not cats) is a member of itself
- Let S be the set of all sets which are not members of themselves
- $S = \{x \mid x \notin x\}$ (using naive comprehension)
- Question: is S a member of itself ($S \in S$) ?
- $S \in S$ provided that $S \notin S$; $S \notin S$ provided that $S \in S$
- Modern formulations (such as Zermelo-Fraenkel set theory) restrict comprehension. (However, it is impossible to prove in ZF that ZF is consistent unless ZF is inconsistent.)

A (10) A (10)

• Assume A and B are non-empty sets

э

- Assume A and B are non-empty sets
- A function *f* from *A* to *B* is an assignment of exactly one element of *B* to each element of *A*

- Assume A and B are non-empty sets
- A function *f* from *A* to *B* is an assignment of exactly one element of *B* to each element of *A*
- f(a) = b if f assigns b to a

- Assume A and B are non-empty sets
- A function *f* from *A* to *B* is an assignment of exactly one element of *B* to each element of *A*
- f(a) = b if f assigns b to a
- $f : A \rightarrow B$ if f is a function from A to B

Definition

 $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

Definition

 $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?

Definition

 $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?

YES

Definition

- $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)
 - Is the identity function $\iota_A : A \to A$ injective?
 - Is the function $\sqrt{\cdot} : \mathbb{Z}^+ \to \mathbb{R}^+$ injective?

A (1) > A (1) > A

YFS

Definition

- $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)
 - Is the identity function $\iota_A : A \rightarrow A$ injective?
 - Is the function $\sqrt{\cdot} : \mathbb{Z}^+ \to \mathbb{R}^+$ injective?

A (B) > A (B) > A (B)

YES

YFS

Definition

- $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)
 - Is the identity function $\iota_A : A \to A$ injective?
 - Is the function $\sqrt{\cdot} : \mathbb{Z}^+ \to \mathbb{R}^+$ injective?
 - Is the squaring function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ injective?

4 **A b b b b b b**

YES

YFS

Definition

 $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?	YES
• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?	YES
• Is the squaring function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ injective?	NO

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

 $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?	YES
• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?	YES
• Is the squaring function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ injective?	NO
• Is the function $ \cdot : \mathbb{R} \to \mathbb{R}$ injective?	

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

 $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?	YES
• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?	YES
• Is the squaring function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ injective?	NO
• Is the function $ \cdot : \mathbb{R} \to \mathbb{R}$ injective?	NO

Definition

 $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?	YES
• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?	YES
• Is the squaring function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ injective?	NO
• Is the function $ \cdot : \mathbb{R} \to \mathbb{R}$ injective?	NO
• Assume $m > 1$. Is mod $m : Z \rightarrow \{0, \ldots, m-1\}$ injective?	

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

 $f : A \rightarrow B$ is injective iff $\forall a, c \in A$ (if f(a) = f(c) then a = c)

• Is the identity function $\iota_A : A \to A$ injective?	YES
• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ injective?	YES
• Is the squaring function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ injective?	NO
• Is the function $ \cdot : \mathbb{R} \to \mathbb{R}$ injective?	NO
• Assume $m > 1$. Is mod $m : Z \rightarrow \{0, \ldots, m-1\}$ injective?	NO

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Onto or surjective functions

Definition

 $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

Onto or surjective functions

Definition

 $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

• Is the identity function $\iota_A : A \rightarrow A$ surjective?

A (10) > A (10) > A (10)
Definition

- $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$
 - Is the identity function $\iota_A : A \rightarrow A$ surjective?

Colin Stirling (Informatics)

Discrete Mathematics (Chaps 2 & 9)

A (10) > A (10) > A (10)

Definition

- $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$
 - Is the identity function $\iota_A : A \rightarrow A$ surjective?
 - Is the function $\sqrt{\cdot}:\mathbb{Z}^+\to\mathbb{R}^+$ surjective?

A (10) F (10)

YFS

Definition

- $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$
 - Is the identity function $\iota_A : A \to A$ surjective?
 - Is the function $\sqrt{\cdot} : \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?

A I > A = A A

YES

NO

Definition

- $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$
 - Is the identity function $\iota_A : A \rightarrow A$ surjective?
 - Is the function $\sqrt{\cdot} : \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?
 - Is the function $\cdot^2:\mathbb{Z}\to\mathbb{Z}$ surjective?

4 A N A H N A

YFS

NO

Definition

- $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$
 - Is the identity function $\iota_A : A \to A$ surjective? YES • Is the function $\sqrt{\cdot} : \mathbb{Z}^+ \to \mathbb{R}^+$ surjective? NO • Is the function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ surjective? NO

4 A N A H N A

Definition

 $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

• Is the identity function $\iota_A : A \to A$ surjective?	YES
• Is the function $\sqrt{\cdot}:\mathbb{Z}^+ \to \mathbb{R}^+$ surjective?	NO
• Is the function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ surjective?	NO
• Is the function $ \cdot : \mathbb{R} \to \mathbb{R}$ surjective?	

Definition

 $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

• Is the identity function $\iota_A : A \to A$ surjective?	YES
• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?	NO
• Is the function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ surjective?	NO
• Is the function $ \cdot : \mathbb{R} \to \mathbb{R}$ surjective?	NO

Definition

 $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

イヨト イヨト イヨ

Definition

 $f : A \rightarrow B$ is surjective iff $\forall b \in B \exists a \in A (f(a) = b)$

• Is the identity function $\iota_A : A \rightarrow A$ surjective?	YES
• Is the function $\sqrt{\cdot}: \mathbb{Z}^+ \to \mathbb{R}^+$ surjective?	NO
• Is the function $\cdot^2 : \mathbb{Z} \to \mathbb{Z}$ surjective?	NO
• Is the function $ \cdot : \mathbb{R} \to \mathbb{R}$ surjective?	NO
• Assume $m > 1$. Is mod $m : Z \rightarrow \{0, \ldots, m-1\}$ surjective?	YES

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

Colin Stirling (Informatics)

Discrete Mathematics (Chaps 2 & 9)

Today 9 / 24

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \rightarrow A$ a bijection?

A (10) + A (10) +

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \rightarrow A$ a bijection?

YES

4 **A b b b b b b**

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

- Is the identity function $\iota_A : A \rightarrow A$ a bijection?
- Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

- Is the identity function $\iota_A : A \rightarrow A$ a bijection?
- Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?

YES

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

- Is the identity function $\iota_A : A \rightarrow A$ a bijection?
- Is the function $\sqrt{\cdot} : \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?
- Is the function $\cdot^2:\mathbb{R}\to\mathbb{R}$ a bijection?

YES

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?	YES
• Is the function $\sqrt{\cdot}: \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?	YES
• Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ a bijection?	NO

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?	YES
• Is the function $\sqrt{\cdot}: \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?	YES
• Is the function $\cdot^2:\mathbb{R}\to\mathbb{R}$ a bijection?	NO

• Is the function $|\cdot|: \mathbb{R} \to \mathbb{R}$ a bijection?

Definition

 $f: A \rightarrow B$ is a bijection iff it is both injective and surjective

• Is the identity function $\iota_A : A \to A$ a bijection?	YES
• Is the function $\sqrt{\cdot}: \mathbb{R}^+ \to \mathbb{R}^+$ a bijection?	YES
• Is the function $\cdot^2 : \mathbb{R} \to \mathbb{R}$ a bijection?	NO
• Is the function $ \cdot : \mathbb{R} \to \mathbb{R}$ a bijection?	NO

Function composition

Definition Let $f : B \to C$ and $g : A \to B$. The composition function $f \circ g : A \to C$ is $(f \circ g)(a) = f(g(a))$

Today 10 / 24

Theorem

The composition of two functions is a function

• • • • • • • • • • • •

Theorem

The composition of two functions is a function

Theorem

The composition of two injective functions is an injective function

Theorem

The composition of two functions is a function

Theorem

The composition of two injective functions is an injective function

Theorem

The composition of two surjective functions is a surjective function

Theorem

The composition of two functions is a function

Theorem

The composition of two injective functions is an injective function

Theorem

The composition of two surjective functions is a surjective function

Corollary

The composition of two bijections is a bijection

Definition

If $f : A \to B$ is a bijection, then the inverse of f, written $f^{-1} : B \to A$ is $f^{-1}(b) = a$ iff f(a) = b

• • • • • • • • • • • • •

Definition

If $f : A \to B$ is a bijection, then the inverse of f, written $f^{-1} : B \to A$ is $f^{-1}(b) = a$ iff f(a) = b

What is the inverse of $\iota_A : A \rightarrow A$?

Definition

If $f : A \to B$ is a bijection, then the inverse of f, written $f^{-1} : B \to A$ is $f^{-1}(b) = a$ iff f(a) = b

What is the inverse of $\iota_A : A \rightarrow A$?

What is the inverse of $\sqrt{:}\mathbb{R}^+ \to \mathbb{R}^+$?

Definition

If $f : A \to B$ is a bijection, then the inverse of f, written $f^{-1} : B \to A$ is $f^{-1}(b) = a$ iff f(a) = b

What is the inverse of $\iota_A : A \rightarrow A$?

What is the inverse of $\sqrt{:}\mathbb{R}^+ \to \mathbb{R}^+$?

What is $f^{-1} \circ f$? and $f \circ f^{-1}$?

The floor and ceiling functions

Definition

The floor function $\lfloor \ \rfloor : \mathbb{R} \to \mathbb{Z}$ is $\lfloor x \rfloor$ equals the largest integer less than or equal to x

Definition

The ceiling function $[\]: \mathbb{R} \to \mathbb{Z}$ is [x] equals the smallest integer greater than or equal to x

4 D K 4 B K 4 B K 4 B K

The floor and ceiling functions

Definition

The floor function $\lfloor \ \rfloor : \mathbb{R} \to \mathbb{Z}$ is $\lfloor x \rfloor$ equals the largest integer less than or equal to x

Definition

The ceiling function $[\]: \mathbb{R} \to \mathbb{Z}$ is [x] equals the smallest integer greater than or equal to x

$$\left\lfloor \frac{1}{2} \right\rfloor = \left\lceil -\frac{1}{2} \right\rceil = \lfloor 0 \rfloor = \lceil 0 \rceil = 0$$

4 D K 4 B K 4 B K 4 B K

The floor and ceiling functions

Definition

The floor function $\lfloor \ \rfloor : \mathbb{R} \to \mathbb{Z}$ is $\lfloor x \rfloor$ equals the largest integer less than or equal to x

Definition

The ceiling function $[\]: \mathbb{R} \to \mathbb{Z}$ is [x] equals the smallest integer greater than or equal to x

$$\left|\frac{1}{2}\right| = \left[-\frac{1}{2}\right] = \lfloor 0 \rfloor = \lceil 0 \rceil = 0$$

 $\lfloor -6.1 \rfloor = -7 \quad \lceil 6.1 \rceil = 7$

Useful tips about floors and ceilings

- When showing properties of floors is to let x = n + ε if [x] = n where 0 ≤ ε < 1
- Similarly, for ceilings let $x = n \epsilon$ if $\lceil x \rceil = n$ where $0 \le \epsilon < 1$

イロト イヨト イヨト イヨト

Useful tips about floors and ceilings

- When showing properties of floors is to let x = n + ε if [x] = n where 0 ≤ ε < 1
- Similarly, for ceilings let $x = n \epsilon$ if $\lceil x \rceil = n$ where $0 \le \epsilon < 1$
- Prove

$$\forall x \in \mathbb{R} (\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor)$$

イロト イヨト イヨト イヨト

Useful tips about floors and ceilings

- When showing properties of floors is to let x = n + ε if [x] = n where 0 ≤ ε < 1
- Similarly, for ceilings let $x = n \epsilon$ if $\lceil x \rceil = n$ where $0 \le \epsilon < 1$
- Prove

$$\forall x \in \mathbb{R} (\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor)$$

Proof in book

4 **A** N A **B** N A **B** N

Prove $\lceil x \rceil + \lceil y \rceil = \lceil x + y \rceil$

<ロ> <問> <問> < 回> < 回> 、

Prove $\lceil x \rceil + \lceil y \rceil = \lceil x + y \rceil$

False; counterexample x = 1/2 and y = 1/2

イロト イポト イヨト イヨト

The factorial function

Definition

The factorial function $f : \mathbb{N} \to \mathbb{N}$, denoted as f(n) = n! assigns to *n* the product of the first *n* positive integers

$$f(0) = 0! = 1$$

and

$$f(n) = n! = 1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n$$

4 **A b b b b b b**
Definition

A binary relation *R* on sets *A* and *B* is a subset $R \subseteq A \times B$

Definition

A binary relation *R* on sets *A* and *B* is a subset $R \subseteq A \times B$

• *R* is a set of tuples (a, b) with $a \in A$ and $b \in B$

Definition

A binary relation *R* on sets *A* and *B* is a subset $R \subseteq A \times B$

- *R* is a set of tuples (a, b) with $a \in A$ and $b \in B$
- Often we write a R b for $(a, b) \in R$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

A binary relation *R* on sets *A* and *B* is a subset $R \subseteq A \times B$

- *R* is a set of tuples (a, b) with $a \in A$ and $b \in B$
- Often we write a R b for $(a, b) \in R$
- R is a relation on A if B = A

A (10) A (10) A (10)

Definition

A binary relation *R* on sets *A* and *B* is a subset $R \subseteq A \times B$

- *R* is a set of tuples (a, b) with $a \in A$ and $b \in B$
- Often we write a R b for $(a, b) \in R$
- R is a relation on A if B = A

A (10) A (10) A (10)

Definition

A binary relation *R* on sets *A* and *B* is a subset $R \subseteq A \times B$

- *R* is a set of tuples (a, b) with $a \in A$ and $b \in B$
- Often we write a R b for $(a, b) \in R$
- R is a relation on A if B = A

Definition

Given sets A_1, \ldots, A_n , a subset $R \subseteq A_1 \times \cdots \times A_n$ is an *n*-ary relation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Divides $|: \mathbb{Z}^+ \times \mathbb{Z}^+$ is $\{(n, m) \mid \exists k \in \mathbb{Z}^+ (m = kn)\}$

■ ▶ ■ つへの Today 18/24

イロト イポト イヨト イヨト

Examples

- Divides $|: \mathbb{Z}^+ \times \mathbb{Z}^+$ is $\{(n, m) \mid \exists k \in \mathbb{Z}^+ (m = kn)\}$
- Let m > 1 be an integer. $R = \{(a, b) \mid a \mod m = b \mod m\}$

Examples

- Divides $|: \mathbb{Z}^+ \times \mathbb{Z}^+$ is $\{(n, m) \mid \exists k \in \mathbb{Z}^+ (m = kn)\}$
- Let m > 1 be an integer. $R = \{(a, b) \mid a \mod m = b \mod m\}$
- Written as $a \equiv b \pmod{m}$

A binary relation R on A is called

• reflexive iff
$$\forall x \in A (x, x) \in R$$

• • • • • • • • • • • • •

A binary relation R on A is called

- reflexive iff $\forall x \in A (x, x) \in R$
- \leq , =, and | are reflexive, but < is not

A binary relation R on A is called

- reflexive iff $\forall x \in A (x, x) \in R$
- \leq , =, and | are reflexive, but < is not
- symmetric iff $\forall x, y \in A ((x, y) \in R \rightarrow (y, x) \in R)$
- = is symmetric, but \leq , <, and | are not

A binary relation R on A is called

- reflexive iff $\forall x \in A (x, x) \in R$
- \leq , =, and | are reflexive, but < is not
- symmetric iff $\forall x, y \in A ((x, y) \in R \rightarrow (y, x) \in R)$
- = is symmetric, but \leq , <, and | are not
- antisymmetric iff $\forall x, y \in A (((x, y) \in R \land (y, x) \in R) \rightarrow x = y)$

A binary relation R on A is called

- reflexive iff $\forall x \in A (x, x) \in R$
- \leq , =, and | are reflexive, but < is not
- symmetric iff $\forall x, y \in A ((x, y) \in R \rightarrow (y, x) \in R)$
- = is symmetric, but \leq , <, and | are not
- antisymmetric iff $\forall x, y \in A (((x, y) \in R \land (y, x) \in R) \rightarrow x = y)$
- \leq , =, <, and | are antisymmetric

A THE A THE A

A binary relation R on A is called

- reflexive iff $\forall x \in A (x, x) \in R$
- \leq , =, and | are reflexive, but < is not
- symmetric iff $\forall x, y \in A ((x, y) \in R \rightarrow (y, x) \in R)$
- = is symmetric, but \leq , <, and | are not
- antisymmetric iff $\forall x, y \in A (((x, y) \in R \land (y, x) \in R) \rightarrow x = y)$
- \leq , =, <, and | are antisymmetric
- transitive iff $\forall x, y, z \in A (((x, y) \in R \land (y, z) \in R) \rightarrow (x, z) \in R)$
- \leq , =, <, and | are transitive

くゆ くうとく ひとう う

Definition

A relation *R* on a set *A* is an equivalence relation iff it is reflexive, symmetric and transitive

Definition

A relation R on a set A is an equivalence relation iff it is reflexive, symmetric and transitive

• Let Σ^* be the set of strings over alphabet Σ . The relation $\{(s, t) \in \Sigma^* \times \Sigma^* \mid |s| = |t|\}$ is an equivalence relation

Definition

A relation R on a set A is an equivalence relation iff it is reflexive, symmetric and transitive

- Let Σ^* be the set of strings over alphabet Σ . The relation $\{(s, t) \in \Sigma^* \times \Sigma^* \mid |s| = |t|\}$ is an equivalence relation
- | on integers is not an equivalence relation.

Definition

A relation R on a set A is an equivalence relation iff it is reflexive, symmetric and transitive

- Let Σ^* be the set of strings over alphabet Σ . The relation $\{(s, t) \in \Sigma^* \times \Sigma^* \mid |s| = |t|\}$ is an equivalence relation
- | on integers is not an equivalence relation.
- For *m* > 1 be an integer the relation ≡ (mod *m*) is an equivalence relation on integers

Equivalence classes

Definition Let *R* be an equivalence relation on a set *A* and $a \in A$. Let $[a]_R = \{s \mid (a, s) \in R\}$ be the equivalence class of *a* w.r.t. *R*

If $b \in [a]_R$ then *b* is called a representative of the equivalence class. Every member of the class can be a representative

Theorem

Result

Let *R* be an equivalence on *A* and $a, b \in A$. The following three statements are equivalent

- aRb
- **2** $[a]_R = [b]_R$
- **③** $[a]_R \cap [b]_R \neq \emptyset$

A (10) A (10) A (10)

Theorem

Result

Let *R* be an equivalence on *A* and $a, b \in A$. The following three statements are equivalent

- aRb
- **2** $[a]_R = [b]_R$
- **③** $[a]_R \cap [b]_R \neq \emptyset$

Proof in book

A > + = + + =

Partitions of a set

Definition

A partition of a set *A* is a collection of disjoint, nonempty subsets that have *A* as their union. In other words, the collection of subsets $A_i \subseteq A$ with $i \in I$ (where *I* is an index set) forms a partition of *A* iff

Result

Theorem

- If R is an equivalence on A, then the equivalence classes of R form a partition of A
- ② Conversely, given a partition $\{A_i | i \in I\}$ of *A* there exists an equivalence relation *R* that has exactly the sets A_i , *i* ∈ *I*, as its equivalence classes

Result

Theorem

- If R is an equivalence on A, then the equivalence classes of R form a partition of A
- ② Conversely, given a partition $\{A_i | i \in I\}$ of *A* there exists an equivalence relation *R* that has exactly the sets A_i , *i* ∈ *I*, as its equivalence classes

Proof in book