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Multiplicative inverses
Theorem
If m, x are positive integers and gcd(m, x) = 1 then x has a
multiplicative inverse modulo m (and it is unique modulo m)

Proof.
Consider the sequence of m numbers 0, x , 2x , ..., (m − 1)x . We first
show that these are all distinct modulo m.
To verify the above claim, suppose that ax mod m = bx mod m for two
distinct values a, b in the range 0 ≤ a, b ≤ m − 1. Then we would have
(a− b)x ≡ 0(mod m), or equivalently, (a− b)x = km for some integer
k. But since x and m are relatively prime, it follows that a− b must be
an integer multiple of m. This is not possible since a,b are distinct
non-negative integers less than m.
Now, since there are only m distinct values modulo m, it must then be
the case that ax ≡ 1(mod m) for exactly one a (modulo m). This a is
the unique multiplicative inverse.
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Chinese remainder theorem

Theorem
Let m1, m2, . . . , mn be pairwise relatively prime positive integers
greater than 1 and a1, a2, . . . , an be arbitrary integers. Then the system

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)
...
x ≡ an (mod mn)

has a unique solution modulo m = m1m2 · · ·mn

Proof.
In the book
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Example

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 5 (mod 7)

m = 3 · 5 · 7 = 105
M1 = 35 and 2 is an inverse of M1 mod 3
M2 = 21 and 1 is an inverse of M2 mod 5
M3 = 15 and 1 is an inverse of M3 mod 7
x = 2 · 35 · 2 + 3 · 21 · 1 + 5 · 15 · 1
x = 140 + 63 + 75 = 278 ≡ 68 (mod 105)
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Fermat’s little theorem

Theorem
If p is prime and p 6 |a, then ap−1 ≡ 1 (mod p). Furthermore, for every
integer a we have ap ≡ a (mod p)

Proof.
Assume p 6 |a and so, therefore, gcd(p, a) = 1. Then a, 2a, . . . , (p − 1)a
are not pairwise congruent modulo p; if ia ≡ ja (mod p) then
(i − j)a = pm for some m which is impossible (as then i ≡ j (mod p)
using last result from slides of Lecture 11). Therefore, each element
ja mod p is a distinct element in the set {1, . . . , p− 1}. This means that
the product a · 2a · · · (p − 1)a ≡ 1 · 2 · · · p − 1 (mod p). Therefore,
(p − 1)!ap−1 ≡ (p − 1)! (mod p). Now because gcd(p, q) = 1 for
1 ≤ q ≤ p − 1 it follows that ap−1 ≡ 1 (mod p). Therefore, also
ap ≡ a (mod p) and when p|a then clearly ap ≡ a (mod p).
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Computing the remainders modulo prime p

Find 7222 mod 11

By Fermat’s little theorem, we know that 710 ≡ 1 (mod 11), and so
(710)k ≡ 1 (mod 11) for every positive integer k . Therefore,
7222 = 722·10+2 = (710)22 72 ≡ 12249 ≡ 5 (mod 11). Hence,
7222 mod 11 = 5

2340 ≡ 1 (mod 11) because 210 ≡ 1 (mod 11)
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Private key cryptography

Bob wants to send Alice a secret message M

Alice sends Bob a private key En (which has an inverse De)
Bob encrypts M and sends Alice En(M)
Alice decrypts En(M), De(En(M))
Important property De(En(M)) = M
Alice and Bob share a secret which could be intercepted by a third
party
Example use En(p) = (p + 3) mod 26
What is WKLV LV D VHFSHW ?
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Public key cryptography

Bob wants to send Alice a secret message M

Without Alice and Bob sharing a secret
Alice sends Bob a public key En (and keeps her inverse private
key De secret from everyone including Bob)
Bob encrypts M and sends Alice En(M)
Alice decrypts En(M), De(En(M))
Important property De(En(M)) = M
The challenge: De can’t be feasibly computed from En; and given
En(M) one can’t feasibly compute M
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RSA Cryptosystem

Named after 3 researchers: Rivest, Shamir and Adleman

There are quick algorithms for testing whether a large integer is
prime

There is no known quick algorithm that can factorise a large
integer

Very significant open problem: how hard is it to factorise integers?
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RSA: key generation

Choose two distinct prime numbers p and q

Let n = pq and k = (p − 1)(q − 1)

Choose integer e where 1 < e < k and gcd(e, k) = 1

(n, e) is released as the public key

Let d be the multiplicative inverse of e modulo k , so
de ≡ 1 (mod k)

(n, d) is the private key and kept secret
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RSA: encryption and decryption

Alice transmits her public key (n, e) to Bob and keeps the private key
secret

Encryption If Bob wishes to send message M to Alice.
1 He turns M into an integer m, such that 0 ≤ m < n by using an

agreed-upon reversible protocol known as a padding scheme
2 He computes the ciphertext c corresponding to c = me mod n.

(This can be done quickly)
3 Bob transmits c to Alice.

Decryption Alice can recover m from c by
1 Using her private key exponent d via computing m = cd mod n
2 Given m, she can recover the original message M by reversing the

padding scheme

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 11 / 13



Unrealistic example

n = 43 · 59 = 2537

gcd(13, 42 · 58) = 1, so public key is (2537, 13)

d = 937 is inverse of 13 modulo 2436 = 42 · 58; private key
(2537, 937)

Encrypt STOP as two blocks 1819 for ST and 1415 for OP
(padding scheme)
So, 181913 mod 2537 = 2081 and 141513 mod 2537 = 2182
So encrypted message is 2081 2182
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RSA: correctness of decryption

Given that c = me mod n, is m = cd mod n?

cd = (me)d ≡ med (mod n)

By construction, d and e are each others multiplicative inverses
modulo k , i.e. ed ≡ 1 (mod k). Also k = (p − 1)(q − 1). Thus
ed − 1 = h(p − 1)(q − 1) for some integer h. We consider med mod p
If p 6 |m then
med = mh(p−1)(q−1)m = (mp−1)h(q−1)m ≡ 1h(q−1)m ≡ m (mod p) (by
Fermat’s little theorem)
Otherwise med ≡ 0 ≡ m (mod p)
Symmetrically, med ≡ m (mod q)
Since p, q are distinct primes, we have med ≡ m (mod pq). Since
n = pq, we have cd = med ≡ m (mod n)
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