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Primes

Definition
A positive integer p > 1 is called prime iff the only positive factors of p
are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a
prime or as the product of its prime factors, written in order of
nondecreasing size

765 = 3 · 3 · 5 · 17 = 32 · 5 · 17
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Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)
Every positive integer greater than 1 can be written uniquely as a
prime or as the product of its prime factors, written in order of
nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a
product of primes

Missing is uniqueness

Lemma if p is prime and p|a1a2 . . . an where each ai is an integer, then
p|aj for some 1 ≤ j ≤ n

By induction too

Now result follows
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There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has
a prime divisor

Follows from fundamental theorem

Proof Suppose towards a contradiction that there are only finitely many
primes p1, p2, p3, . . . , pk . Consider the number q = p1p2p3 . . . pk + 1,
the product of all the primes plus one. By hypothesis q cannot be
prime because it is strictly larger than all the primes. Thus, by the
lemma, it has a prime divisor, p. Because p1, p2, p3, . . . , pk are all the
primes, p must be equal to one of them, so p is a divisor of their
product. So we have that p divides p1p2p3 . . . pk , and p divides q, but
that means p divides their difference, which is 1. Therefore p ≤ 1.
Contradiction. Therefore there are infinitely many primes.
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The Sieve of Eratosthenes

How to find all primes between 2 and n?

A very inefficient method of determining if a number n is prime
Try every integer i ≤

√
n and see if n is divisible by i

1 Write the numbers 2, . . . , n into a list. Let i := 2
2 Remove all strict multiples of i from the list
3 Let k be the smallest number present in the list s.t. k > i and let

i := k
4 If i >

√
n then stop else go to step 2

Testing if a number is prime can be done efficiently in polynomial time
[Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number of bits
used to describe the input number. Efficient randomized tests had
been available previously.
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Greatest common divisor

Definition
Let a, b ∈ Z+.The largest integer d such that d |a and d |b is called the
greatest common divisor of a and b, written gcd(a, b)

gcd(24, 36) = 12

Definition
The integers a and b are relatively prime (coprime) iff gcd(a, b) = 1

9 and 22 are coprime (both are composite)
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Gcd by prime factorisations

Suppose that the prime factorisations of a and b are

a = pa1
1 pa2

2 · · · p
an
n b = pb1

1 pb2
2 · · · p

bn
n

where each exponent is a nonnegative integer (possibly zero)

gcd(a, b) = pmin(a1,b1)
1 pmin(a2,b2)

2 · · · pmin(an,bn)
n

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.

Factorisation is a very inefficient method to compute gcd
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Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

algorithm gcd(x,y)
if y = 0
then return(x)
else return(gcd(y,x mod y))

The Euclidian algorithm relies on

∀x , y ∈ Z (x > y → gcd(x , y) = gcd(y , x mod y))
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Euclidian algorithm (proof of correctness)

Lemma
If a = bq + r , where a, b, q, and r are positive integers, then
gcd(a, b) = gcd(b, r)

Proof.
(⇒) Suppose that d divides both a and b. Then d also divides
a− bq = r . Hence, any common divisor of a and b must also be a
common divisor of b and r
(⇐) Suppose that d divides both b and r . Then d also divides
bq + r = a. Hence, any common divisor of b and r must also be a
common divisor of a and b.
Therefore, gcd(a, b) = gcd(b, r)
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Gcd as a linear combination

Theorem (Bézout’s theorem)
If x and y are positive integers, then there exist integers a and b such
that gcd(x , y) = ax + by

Proof.
Let S be the set of positive integers of the form ax + by (where a or b
may be a negative integer); clearly, S is non-empty as it includes x + y .
By the well-ordering principle S has a least element c. So c = ax + by
for some a and b. If d |x and d |y then d |ax and d |by and so
d |(ax + by), that is d |c. We now show c|x and c|y which means that
c = gcd(x , y). Assume c 6 | x . So x = qc + r where 0 < r < c. Now
r = x − qc = x − q(ax + by). That is, r = (1− qa)x + (−qb)y , so
r ∈ S which contradicts that c is the least element in S as c < r . The
same argument shows c|y .
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Computing Bézout coefficients

2 = gcd(6, 14) = (−2) · 6 + 1 · 14

Extended Euclidian algorithm

algorithm extended-gcd(x,y)
if y = 0
then return(x, 1, 0)
else
(d, a, b) := extended-gcd(y, x mod y)
return((d, b, a - ((x div y) * b)))
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Further properties
Theorem
If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

Proof.
Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and t
such that sa + tb = 1. So, sac + tbc = c. Assume a|bc. Therefore,
a|tbc and a|sac, so a|(sac + tbc); that is, a|c.

Theorem
Let m be a positive integer and let a, b, c be integers. If
ac ≡ bc (mod m) and gcd(c, m) = 1 then a ≡ b (mod m)

Proof.
Because ac ≡ bc (mod m), it follows m|(ac − bc); so, m|c(a− b). By
the result above because gcd(c, m) = 1, it follows that m|(a− b).
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