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Primes
Definition

A positive integer p > 1 is called prime iff the only positive factors of p
are 1 and p. Otherwise it is called composite
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Primes

Definition

A positive integer p > 1 is called prime iff the only positive factors of p
are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a
prime or as the product of its prime factors, written in order of
nondecreasing size
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Primes

Definition

A positive integer p > 1 is called prime iff the only positive factors of p
are 1 and p. Otherwise it is called composite

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a
prime or as the product of its prime factors, written in order of
nondecreasing size

765=3.3.-5-17=32.5.17

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 2/12



Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a

prime or as the product of its prime factors, written in order of
nondecreasing size
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Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a

prime or as the product of its prime factors, written in order of
nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a
product of primes
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Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a
prime or as the product of its prime factors, written in order of
nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a
product of primes

Missing is uniqueness
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Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a

prime or as the product of its prime factors, written in order of
nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a
product of primes

Missing is uniqueness

Lemma if p is prime and p|a;az . . . a, where each g; is an integer, then
pla; forsome 1 <j<n
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Proof of fundamental theorem

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a
prime or as the product of its prime factors, written in order of
nondecreasing size

Showed by induction if n > 1 is an integer then n can be written as a
product of primes

Missing is uniqueness

Lemma if p is prime and p|a;az . . . a, where each g; is an integer, then
pla; forsome 1 <j<n

By induction too

Now result follows
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There are infinitely many primes
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There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has
a prime divisor
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There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has
a prime divisor

Follows from fundamental theorem
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There are infinitely many primes

Lemma Every natural number greater than one is either prime or it has
a prime divisor

Follows from fundamental theorem

Proof Suppose towards a contradiction that there are only finitely many
primes pq, pPo, Ps, - - ., Px. Consider the number g = p1pP2ps3 ... Pk + 1,
the product of all the primes plus one. By hypothesis g cannot be
prime because it is strictly larger than all the primes. Thus, by the
lemma, it has a prime divisor, p. Because py, po, p3, ..., px are all the
primes, p must be equal to one of them, so p is a divisor of their
product. So we have that p divides p1pops ... px , and p divides g, but
that means p divides their difference, which is 1. Therefore p < 1.
Contradiction. Therefore there are infinitely many primes.
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The Sieve of Eratosthenes

How to find all primes between 2 and n?
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The Sieve of Eratosthenes

How to find all primes between 2 and n?

A very inefficient method of determining if a number nis prime
Try every integer i < v/n and see if nis divisible by i
@ Write the numbers 2,. .., ninto a list. Let i :=2
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A very inefficient method of determining if a number nis prime
Try every integer i < v/n and see if nis divisible by i

@ Write the numbers 2,. .., ninto a list. Let i :=2

© Remove all strict multiples of i from the list
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The Sieve of Eratosthenes

How to find all primes between 2 and n?

A very inefficient method of determining if a number nis prime
Try every integer i < v/n and see if nis divisible by i

@ Write the numbers 2,. .., ninto a list. Let i :=2

© Remove all strict multiples of i from the list

© Let k be the smallest number present in the list s.t. k > i and let
i=k
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The Sieve of Eratosthenes

How to find all primes between 2 and n?

A very inefficient method of determining if a number nis prime
Try every integer i < v/n and see if nis divisible by i
@ Write the numbers 2,. .., ninto a list. Let i :=2
© Remove all strict multiples of i from the list
© Let k be the smallest number present in the list s.t. k > i and let
i=k
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The Sieve of Eratosthenes

How to find all primes between 2 and n?

A very inefficient method of determining if a number n is prime
Try every integer i < v/n and see if nis divisible by i
@ Write the numbers 2,. .., ninto a list. Let i :=2
© Remove all strict multiples of i from the list
© Let k be the smallest number present in the list s.t. k > i and let
i=k
Q If i > \/nthen stop else go to step 2

Testing if a number is prime can be done efficiently in polynomial time
[Agrawal-Kayal-Saxena 2002], i.e., polynomial in the number of bits
used to describe the input number. Efficient randomized tests had
been available previously.
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Greatest common divisor

Definition

Let a, b € Z*.The largest integer d such that d|a and d|b is called the
greatest common divisor of a and b, written gcd(a, b)
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Greatest common divisor

Definition

Let a, b € Z*.The largest integer d such that d|a and d|b is called the
greatest common divisor of a and b, written gcd(a, b)

gcd(24,36) =12
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Greatest common divisor

Definition
Let a, b € Z*.The largest integer d such that d|a and d|b is called the
greatest common divisor of a and b, written gcd(a, b)

gcd(24,36) =12

Definition
The integers a and b are relatively prime (coprime) iff gcd(a, b) = 1
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Greatest common divisor

Definition
Let a, b € Z*.The largest integer d such that d|a and d|b is called the
greatest common divisor of a and b, written gcd(a, b)

gcd(24,36) =12

Definition
The integers a and b are relatively prime (coprime) iff gcd(a, b) = 1 J

9 and 22 are coprime (both are composite)
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Gced by prime factorisations

Suppose that the prime factorisations of a and b are

a=p{'pg---pr b=py Pt pr
where each exponent is a nonnegative integer (possibly zero)
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Gced by prime factorisations

Suppose that the prime factorisations of a and b are

a=pfpg- - pfr b=plpg - pp

where each exponent is a nonnegative integer (possibly zero)

min(ay,by) ,.min(az,bs)

ged(a, b) = p; P> P

min(an,bn)
n
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Gced by prime factorisations

Suppose that the prime factorisations of a and b are

a=pfpg- - pfr b=plpg - pp

where each exponent is a nonnegative integer (possibly zero)

min(ay,by) min(az,b2)

ged(a, b) = p; [ P

min(an,bn)
n

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.
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Gced by prime factorisations

Suppose that the prime factorisations of a and b are
a=p{'pg---pr b=py Pt pr
where each exponent is a nonnegative integer (possibly zero)

gcd(a, b) — p;nin(ahb1 )prznin(327b2) o prn;]in(an’bn)

This number clearly divides a and b. No larger number can divide both
a and b. Proof by contradiction and the prime factorisation of a
postulated larger divisor.

Factorisation is a very inefficient method to compute gcd J
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Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

algorithm gcd(x,Vv)
if y =

=0

then return (x)

else return(gcd(y,x mod y))
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Euclidian algorithm: efficient for computing gcd

Euclidian algorithm

algorithm gcd(x,Vv)
if vy =0
then return (x)
else return(gcd(y,x mod y))

The Euclidian algorithm relies on

Vx,y € Z (x >y — ged(x, y) = ged(y, x mod y))
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Euclidian algorithm (proof of correctness)
Lemma

gcd(a, b) = ged(b, r)

If a= bg+ r, where a, b, q, and r are positive integers, then
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Euclidian algorithm (proof of correctness)

Lemma

If a= bg+ r, where a, b, q, and r are positive integers, then
gcd(a, b) = ged(b, r)

Proof.

(=) Suppose that d divides both a and b. Then d also divides

a— bqg = r. Hence, any common divisor of a and b must also be a
common divisor of b and r

(<) Suppose that d divides both b and r. Then d also divides

bg + r = a. Hence, any common divisor of b and r must also be a
common divisor of a and b.

Therefore, gcd(a, b) = ged(b, r) O
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Gced as a linear combination

Theorem (Bézout’s theorem)

If x and y are positive integers, then there exist integers a and b such
that gcd(x, y) = ax + by
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Gced as a linear combination

Theorem (Bézout’s theorem)

If x and y are positive integers, then there exist integers a and b such
that gcd(x, y) = ax + by

Proof.

Let S be the set of positive integers of the form ax + by (where aor b
may be a negative integer); clearly, S is non-empty as it includes x + y.
By the well-ordering principle S has a least element ¢. So ¢ = ax + by
for some a and b. If d|x and d|y then d|ax and d|by and so

d|(ax + by), that is d|c. We now show c|x and c|y which means that
¢ = gcd(x, y). Assume ¢ fx. So x = gc + r where 0 < r < c. Now
r=x—qc=x-q(ax+ by). Thatis, r = (1 — ga)x + (—gb)y, so

r € S which contradicts that c is the least elementin Sas ¢ < r. The
same argument shows c|y. O

v
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Computing Bézout coefficients

2 =gcd(6,14) = (-2)-6+1-14
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Computing Bézout coefficients

2 =gcd(6,14) = (-2)-6+1-14

Extended Euclidian algorithm
algorithm extended-gcd(x,V)
if vy =0
then return(x, 1, 0)
else
(d, a, b) := extended—-gcd(y, x mod vy)
return((d, b, a - ((x div y) * b)))

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 11/12



Further properties
Theorem

If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

J
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Further properties
Theorem

If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

Proof.

Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and ¢
such that sa+ tb = 1. So, sac + tbc = c. Assume a|bc. Therefore,
altbc and a|sac, so al(sac + tbc); that is, alc. O

v
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Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and ¢
such that sa+ tb = 1. So, sac + tbc = c. Assume a|bc. Therefore,
altbc and a|sac, so al(sac + tbc); that is, alc. O

v

Theorem

Let m be a positive integer and let a, b, ¢ be integers. If
ac = bc (mod m) and ged(c, m) = 1 then a = b (mod m)
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Further properties

Theorem
If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc then a|c

Proof.

Because gcd(a, b) = 1, by Bézout’s theorem there are integers s and ¢
such that sa+ tb = 1. So, sac + tbc = c. Assume a|bc. Therefore,
altbc and a|sac, so al(sac + tbc); that is, alc. O

v

Theorem

Let m be a positive integer and let a, b, ¢ be integers. If
ac = bc (mod m) and ged(c, m) = 1 then a = b (mod m)

Proof.

Because ac = bc (mod m), it follows m|(ac — bc); so, m|c(a — b). By
the result above because gcd(c, m) = 1, it follows that m|(a— b). [
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