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Division
Definition

If a and b are integers with a # 0, then a divides b, written a|b, if there
exists an integer ¢ such that b = ac
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If a and b are integers with a # 0, then a divides b, written a|b, if there
exists an integer ¢ such that b = ac

@ 3|(—12) 3]0 3 f7 (where J“notdivides”)
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Division
Definition

If a and b are integers with a # 0, then a divides b, written a|b, if there
exists an integer ¢ such that b = ac

@ 3|(—12) 3]0 3 f7 (where J“notdivides”)
@ If alb and alc, then a|(b + ¢)
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Division
Definition

If aand b are integers with a # 0, then a divides b, written a|b, if there
exists an integer ¢ such that b = ac

@ 3|(—12) 3]0 3 f7 (where J“notdivides”)
@ If alb and a|c, then a|(b + ¢)

@ Proof alb < 3kp. b= kpaand alc < k.. ¢ = kca. But then
b+ ¢ = (kp + kc)a which by definition implies that a|(b + ¢)

Colin Stirling (Informatics) Discrete Mathematics (Chap 4)

Today 2/10



Division
Definition

If aand b are integers with a # 0, then a divides b, written a|b, if there
exists an integer ¢ such that b = ac

@ 3|(—12) 3|0 3 /7 (where f“notdivides”)

@ If alb and alc, then a|(b+ ¢)

@ Proof alb < 3kp. b= kpaand alc < k.. ¢ = kca. But then
b+ ¢ = (k, + kc)a which by definition implies that a|(b + ¢)

@ If a|b, then albc
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Division
Definition

If aand b are integers with a # 0, then a divides b, written a|b, if there
exists an integer ¢ such that b = ac

@ 3|(—12) 3]0 3 f7 (where J“notdivides”)
@ If alb and alc, then a|(b+ c)

@ Proof alb < 3kp. b= kpaand alc < k.. ¢ = kca. But then
b+ ¢ = (k, + kc)a which by definition implies that a|(b + ¢)
@ If a|b, then albc

@ Proof alb < 3Jkp. b = kpa. But then bc = kpac which by definition
implies that a|lbc
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Division
Definition

If aand b are integers with a # 0, then a divides b, written a|b, if there
exists an integer ¢ such that b = ac

@ 3|(—12) 3]0 3 f7 (where J“notdivides”)
@ If alb and alc, then a|(b+ c)

@ Proof alb < 3kp. b= kpaand alc < k.. ¢ = kca. But then
b+ ¢ = (k, + kc)a which by definition implies that a|(b + ¢)
@ If a|b, then albc

@ Proof alb < 3Jkp. b = kpa. But then bc = kpac which by definition
implies that a|lbc

@ If alb and b|c, then a|c
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Division
Definition

If aand b are integers with a # 0, then a divides b, written a|b, if there
exists an integer ¢ such that b = ac

@ 3|(—12) 3|0 3 /7 (where f“notdivides”)

@ If alb and alc, then a|(b + ¢)

@ Proof alb < 3Jkp. b= kpaand alc < Tk.. ¢ = kca. But then
b+ ¢ = (k, + kc)a which by definition implies that a|(b + ¢)

@ If alb, then albc

@ Proof alb < 3Jkp. b = kpa. But then bc = kpac which by definition
implies that a|lbc

@ If alb and b|c, then a|c

@ Proof alb < 3k,. b= kpaand b|c < k.. ¢ = keb. But then
¢ = (kckp)a which by definition implies that alc
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Division algorithm (not really an algorithm!)
Theorem

If a is an integer and d a positive integer, then there are unique
integers q and r, with0 < r < d, such thata=dq +r
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Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique
integers q and r, with0 < r < d, such thata=dq +r

g is quotient and r the remainder; g = adiv d and r = amod d
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Division algorithm (not really an algorithm!)

Theorem

If a is an integer and d a positive integer, then there are unique
integers q and r, with0 < r < d, such thata=dq +r

g is quotient and r the remainder; g = adiv d and r = amod d

Proof.

Consider the largest g such that dg < a;thena=dg+rfor0 <r < d:
if r > dthen d(g + 1) < a which contradicts that g is largest. So, there
is at least one such g and r. Assume that there is more than one:
a=4dqg+nr,a=dg+r;,and (qi,n) # (g, r2)- 1f g1 = @2 then
rn=a—dgs =a—dqg, =r. Since dgi +r; = dgo + 1>, d— q1
which is impossible because r; — r» < d. Ol
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Congruent modulo m relation

Definition

If aand b are integers and mis a positive integer, then a is congruent
to b modulo m, written a = b (mod m), iff m|(a — b)

@ 17 =5 (mod 6) because 6 divides 17 —5 =12
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Congruent modulo m relation

Definition
If aand b are integers and mis a positive integer, then a is congruent
to b modulo m, written a = b (mod m), iff m|(a — b)

@ 17 =5 (mod 6) because 6 divides 17 —5 =12
® —17 #5 (mod 6) because 6 [ (—22)
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Congruent modulo m relation

Definition
If aand b are integers and mis a positive integer, then a is congruent
to b modulo m, written a = b (mod m), iff m|(a — b)

@ 17 =5 (mod 6) because 6 divides 17 —5 =12
® —17 #5 (mod 6) because 6 [ (—22)
@ —17 =1 (mod 6)

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 4/10



Congruent modulo m relation

Definition
If aand b are integers and mis a positive integer, then a is congruent
to b modulo m, written a = b (mod m), iff m|(a — b)

17 = 5 (mod 6) because 6 divides 17 — 5 =12
—17 # 5 (mod 6) because 6 | (—22)

—17 =1 (mod 6)

24 # 14 (mod 6) because 6 f 10
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Congruence is an equivalence relation
Theorem

a= b (mod m) iffa mod m= b mod m
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Congruence is an equivalence relation

Theorem
a = b (mod m) iffa mod m = b mod m

Proof.

Assume a = b (mod m); so m|(a— b). If a= qym+ ry and
b=gm+rwhere0<rp<mand0<r < mitfollowsthatry =n
and so amod m = b mod m. If amod m = b mod mthen aand b
have the same remainder so a= giym+ r and b = gom + r; therefore
a—b= (g1 — g2)m, and so m|(a — b). O

v
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Congruence is an equivalence relation

Theorem
a = b (mod m) iffa mod m = b mod m

Proof.

Assume a = b (mod m); so m|(a— b). If a= qym+ ry and
b=gm+rwhere0<rp<mand0<r < mitfollowsthatry =n
and so amod m = b mod m. If amod m = b mod mthen aand b
have the same remainder so a= giym+ r and b = gom + r; therefore
a—b= (g1 — g2)m, and so m|(a — b). O

v

@ = (mod m) is an equivalence relation on integers
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A simple theorem of congruence

Theorem

a = b (mod m) iff there is an integer k such that a = b + km
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A simple theorem of congruence

Theorem
a = b (mod m) iff there is an integer k such that a = b+ km

Proof.

If a= b (mod m), then by the definition of congruence m|(a — b).
Hence, there is an integer k such that a — b = km and equivalently
a= b+ km. If there is an integer k such that a = b + km, then

km = a— b. Hence, m|(a— b) and a = b (mod m). O
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Congruences of sums, differences, and products
Theorem

Ifa= b (modm) and c = d (mod m), thena+ ¢ = b+ d (mod m),
a—c=b—d(modm), and ac = bd (mod m)
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Congruences of sums, differences, and products

Theorem

Ifa= b (modm) and c = d (mod m), thena+ ¢ = b+ d (mod m),
a—c=b—d(modm), and ac = bd (mod m)

Proof.

Since a= b (mod m) and ¢ = d (mod m), by the previous theorem,
there are integers s and t with b = a+ smand d = ¢ + tm. Therefore,
b+d=(a+sm)+(c+tm)=(a+c)+ m(s+t),and

bd = (a+ sm)(c + tm) = ac + m(at + c¢s + stm). Hence,
a+c=b+d(mod m)and ac = bd (mod m) O
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Congruences of sums, differences, and products

Theorem

Ifa= b (modm) and c = d (mod m), thena+ ¢ = b+ d (mod m),
a—c=b—d(modm), and ac = bd (mod m)

Proof.

Since a = b (mod m) and ¢ = d (mod m), by the previous theorem,
there are integers s and t with b = a+ smand d = ¢ + tm. Therefore,
b+d=(a+sm)+(c+tm)=(a+c)+ m(s+t),and

bd = (a+ sm)(c + tm) = ac + m(at + c¢s + stm). Hence,
a+c=b+d(mod m)and ac = bd (mod m) O

Corollary
@ (a+ b) mod m = ((a mod m) + (b mod m)) mod m
@ ab mod m = ((a mod m)(b mod m)) mod m

v
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Arithmetic modulo m

o Zm:{0,1,

,m—1}
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Arithmetic modulo m

@ Zm=1{0,1,....m—1}

@ +ponZmisa+mb=(a+b)modm
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Arithmetic modulo m

@ Zm=1{0,1,....m—1}
@ +monZmpisa+mb=(a+ b) mod m

@ -p,onZpisdefinea-,mb=(a-b)modm
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Arithmetic modulo m

@ Zm=1{0,1,....m—1}
@ +monZmpisa+mb=(a+ b) mod m
@ -p,onZpisdefinea-,mb=(a-b)modm

@ Find7+419and -7-119
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Arithmetic modulo m

@ Zm=1{0,1,....m—1}
@ +monZmpisa+mb=(a+ b) mod m
@ -p,onZpisdefinea-,mb=(a-b)modm

@ Find7+419and -7-119
@ 74+119=(7+9) mod11 = 16mod11=5
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Arithmetic modulo m

Zm:{0’1,...7m_1}

+monZmisa+mb=(a+ b) mod m

@ -p,onZpisdefinea-,mb=(a-b)modm

@ Find7+419and -7-119
@ 74+119=(7+9) mod11 = 16mod11=5
@ 7-419=(-7-9)mod11 = —-63mod11=3
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Arithmetic modulo m

The operations +,, and -, satisfy many of the same properties as
ordinary addition and multiplication
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Arithmetic modulo m

The operations +,, and -, satisfy many of the same properties as
ordinary addition and multiplication

Closure If a,b € Zp, then a+n band a-, b belong to Zpy,
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Arithmetic modulo m

The operations +,, and -, satisfy many of the same properties as
ordinary addition and multiplication

Closure If a,b € Zm, then a+, band a-, b belong to Z,

Associativity If a, b, c € Zp, then (a+m b) +mc=a+m(b+mc) and
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Arithmetic modulo m

The operations +,, and -, satisfy many of the same properties as
ordinary addition and multiplication

Closure If a,b € Zm, then a+,, b and a -, b belong to Zp,

Associativity If a,b,c € Zm, then (a+mb) +mc=a+m(b+mc)and

Commutativity If a,b € Zpy, thena+nb=b+naanda-pnb=b-pa
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Arithmetic modulo m

The operations +,, and -, satisfy many of the same properties as
ordinary addition and multiplication

Closure If a,b € Zm, then a+,, b and a -, b belong to Zp,

Associativity If a,b,c € Zm, then (a+mb) +mc=a+m(b+mc)and

Commutativity If a,b € Zpy, thena+nb=b+naanda-pnb=b-pa

Identity elements The elements 0 and 1 are identity elements for
addition and multiplication modulo m, respectively. If a € Z, then
a+m0=aanda-pn1=a
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Arithmetic modulo m

The operations +,, and -, satisfy many of the same properties as
ordinary addition and multiplication

Closure If a,b € Zm, then a+,, b and a -, b belong to Zp,

Associativity If a,b,c € Zm, then (a+mb) +mc=a+m(b+mc)and
Commutativity If a,b € Zpy, thena+nb=b+naanda-pnb=b-pa
Identity elements The elements 0 and 1 are identity elements for

addition and multiplication modulo m, respectively. If a € Z, then
a+m0=aanda-pn1=a

Additive inverses If 0 # a € Zn,, then m — a is the additive inverse of a
modulo m. Moreover, 0 is its own additive inverse a+,, (m—a) =0
and0+,0=0
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Arithmetic modulo m

The operations +,, and -, satisfy many of the same properties as
ordinary addition and multiplication

Closure If a,b € Zm, then a+,, b and a -, b belong to Zp,

Associativity If a,b,c € Zm, then (a+mb) +mc=a+m(b+mc)and
Commutativity If a,b € Zpy, thena+nb=b+naanda-pnb=b-pa
Identity elements The elements 0 and 1 are identity elements for

addition and multiplication modulo m, respectively. If a € Z, then
a+m0=aanda-pn1=a

Additive inverses If 0 # a € Zn,, then m — a is the additive inverse of a
modulo m. Moreover, 0 is its own additive inverse a+,, (m—a) =0
and0+,0=0

Distributivity If a,b,c € Zm, thena-n (b+mc) = (@-mb) +m(a-mc)
and (@a+mb) - mc=(amc)+m(b-mc)
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Multiplicative inverses

by y=1/x,s0xy =1

@ Over the reals, dividing by a number x is the same as multiplying
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Multiplicative inverses

@ Over the reals, dividing by a number x is the same as multiplying
by y=1/x,s0xy =1

@ Similarly for x mod m, we wish to find y mod m such that
xy =1 (mod m)
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Multiplicative inverses

@ Over the reals, dividing by a number x is the same as multiplying
by y=1/x,s0xy =1

@ Similarly for x mod m, we wish to find y mod m such that
xy =1 (mod m)

@ x=8and m=15. Then2x =16 =1 (mod 15),s0 2is a
multiplicative inverse of 8 (mod 15)

Colin Stirling (Informatics) Discrete Mathematics (Chap 4) Today 10/10



Multiplicative inverses

@ Over the reals, dividing by a number x is the same as multiplying
by y=1/x,s0xy =1

@ Similarly for x mod m, we wish to find y mod m such that
xy =1 (mod m)

@ x=8and m=15. Then2x =16 =1 (mod 15),s0 2is a
multiplicative inverse of 8 (mod 15)

@ x=12and m= 15
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Multiplicative inverses

@ Over the reals, dividing by a number x is the same as multiplying
by y=1/x,s0xy =1

@ Similarly for x mod m, we wish to find y mod m such that
xy =1 (mod m)

@ x=8and m=15. Then2x =16 =1 (mod 15), s0o 2 is a
multiplicative inverse of 8 (mod 15)

@ x=12and m=15
The sequence {ax (mod m) | a=0,1,2,...} is periodic, and takes
on the values {0,12,9,6,3}. So, 12 has no multiplicative inverse
mod 15
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Multiplicative inverses

@ Over the reals, dividing by a number x is the same as multiplying
by y=1/x,s0xy =1

@ Similarly for x mod m, we wish to find y mod m such that
xy =1 (mod m)

@ x=8and m=15. Then2x =16 =1 (mod 15), s0o 2 is a
multiplicative inverse of 8 (mod 15)

@ x=12and m=15
The sequence {ax (mod m) | a=0,1,2,...} is periodic, and takes
on the values {0,12,9,6,3}. So, 12 has no multiplicative inverse
mod 15

Not all integers have an inverse mod m. Return to this later J
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