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Division

Definition
If a and b are integers with a 6= 0, then a divides b, written a|b, if there
exists an integer c such that b = ac

3 | (−12) 3 | 0 3 6 |7 (where 6 | “not divides”)
If a|b and a|c, then a|(b + c)

Proof a|b ⇔ ∃kb. b = kba and a|c ⇔ ∃kc . c = kca. But then
b + c = (kb + kc)a which by definition implies that a|(b + c)

If a|b, then a|bc
Proof a|b ⇔ ∃kb. b = kba. But then bc = kbac which by definition
implies that a|bc
If a|b and b|c, then a|c
Proof a|b ⇔ ∃kb. b = kba and b|c ⇔ ∃kc . c = kcb. But then
c = (kckb)a which by definition implies that a|c
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Division algorithm (not really an algorithm!)

Theorem
If a is an integer and d a positive integer, then there are unique
integers q and r , with 0 ≤ r < d, such that a = dq + r

q is quotient and r the remainder; q = a div d and r = a mod d

Proof.
Consider the largest q such that dq ≤ a; then a = dq + r for 0 ≤ r < d :
if r ≥ d then d(q + 1) ≤ a which contradicts that q is largest. So, there
is at least one such q and r . Assume that there is more than one:
a = dq1 + r1, a = dq2 + r2, and (q1, r1) 6= (q2, r2). If q1 = q2 then
r1 = a− dq1 = a− dq2 = r2. Since dq1 + r1 = dq2 + r2, d = r1−r2

q2−q1
which is impossible because r1 − r2 < d .
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Congruent modulo m relation

Definition
If a and b are integers and m is a positive integer, then a is congruent
to b modulo m, written a ≡ b (mod m), iff m|(a− b)

17 ≡ 5 (mod 6) because 6 divides 17− 5 = 12

−17 6≡ 5 (mod 6) because 6 6 | (−22)

−17 ≡ 1 (mod 6)

24 6≡ 14 (mod 6) because 6 6 | 10
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Congruence is an equivalence relation

Theorem
a ≡ b (mod m) iff a mod m = b mod m

Proof.
Assume a ≡ b (mod m); so m|(a− b). If a = q1m + r1 and
b = q2m + r2 where 0 ≤ r1 < m and 0 ≤ r2 < m it follows that r1 = r2
and so a mod m = b mod m. If a mod m = b mod m then a and b
have the same remainder so a = q1m + r and b = q2m + r ; therefore
a− b = (q1 − q2)m, and so m|(a− b).

≡ (mod m) is an equivalence relation on integers
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A simple theorem of congruence

Theorem
a ≡ b (mod m) iff there is an integer k such that a = b + km

Proof.
If a ≡ b (mod m), then by the definition of congruence m|(a− b).
Hence, there is an integer k such that a− b = km and equivalently
a = b + km. If there is an integer k such that a = b + km, then
km = a− b. Hence, m|(a− b) and a ≡ b (mod m).
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Congruences of sums, differences, and products

Theorem
If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d (mod m),
a− c ≡ b − d (mod m), and ac ≡ bd (mod m)

Proof.
Since a ≡ b (mod m) and c ≡ d (mod m), by the previous theorem,
there are integers s and t with b = a + sm and d = c + tm. Therefore,
b + d = (a + sm) + (c + tm) = (a + c) + m(s + t), and
bd = (a + sm)(c + tm) = ac + m(at + cs + stm). Hence,
a + c ≡ b + d (mod m) and ac ≡ bd (mod m)

Corollary
(a + b) mod m = ((a mod m) + (b mod m)) mod m
ab mod m = ((a mod m)(b mod m)) mod m
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Arithmetic modulo m

Zm = {0, 1, . . . , m − 1}

+m on Zm is a +m b = (a + b) mod m

·m on Zm is define a ·m b = (a · b) mod m

Find 7 +11 9 and −7 ·11 9
7 +11 9 = (7 + 9) mod 11 = 16 mod 11 = 5
−7 ·11 9 = (−7 · 9) mod 11 = −63 mod 11 = 3
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Arithmetic modulo m
The operations +m and ·m satisfy many of the same properties as
ordinary addition and multiplication

Closure If a, b ∈ Zm, then a +m b and a ·m b belong to Zm

Associativity If a, b, c ∈ Zm, then (a +m b) +m c = a +m (b +m c) and
(a ·m b) ·m c = a ·m (b ·m c)

Commutativity If a, b ∈ Zm, then a +m b = b +m a and a ·m b = b ·m a

Identity elements The elements 0 and 1 are identity elements for
addition and multiplication modulo m, respectively. If a ∈ Zm then
a +m 0 = a and a ·m 1 = a

Additive inverses If 0 6= a ∈ Zm, then m − a is the additive inverse of a
modulo m. Moreover, 0 is its own additive inverse a +m (m − a) = 0
and 0 +m 0 = 0

Distributivity If a, b, c ∈ Zm, then a ·m (b +m c) = (a ·m b) +m (a ·m c)
and (a +m b) ·m c = (a ·m c) +m (b ·m c)
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Arithmetic modulo m
The operations +m and ·m satisfy many of the same properties as
ordinary addition and multiplication

Closure If a, b ∈ Zm, then a +m b and a ·m b belong to Zm

Associativity If a, b, c ∈ Zm, then (a +m b) +m c = a +m (b +m c) and
(a ·m b) ·m c = a ·m (b ·m c)

Commutativity If a, b ∈ Zm, then a +m b = b +m a and a ·m b = b ·m a
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Multiplicative inverses

Over the reals, dividing by a number x is the same as multiplying
by y = 1/x , so xy = 1

Similarly for x mod m, we wish to find y mod m such that
xy ≡ 1 (mod m)

x = 8 and m = 15. Then 2x = 16 ≡ 1 (mod 15), so 2 is a
multiplicative inverse of 8 (mod 15)

x = 12 and m = 15
The sequence {ax (mod m) | a = 0, 1, 2, ...} is periodic, and takes
on the values {0, 12, 9, 6, 3}. So, 12 has no multiplicative inverse
mod 15

Not all integers have an inverse mod m. Return to this later
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