Sets¹

Myrto Arapinis

School of Informatics University of Edinburgh

September 24, 2014

Sets

- A set is a well-defined finite or infinite collection of objects
 - The proper mathematical definition of set is much more complicated
 - We will not formally study Set Theory here so we do not need to know what well-defined means
 - We will be naively looking at ubiquitous structures that are available within it
- The objects in the set are called the elements or members of the set
- If s is a member of the set \mathcal{S} , then we write $s \in \mathcal{S}$
- If s is not a member of the set S, then we write $s \notin S$

Describing a set: Roster method

• Roster method: list all the elements of the set between braces <u>Example</u> The set of vowels in the English alphabet can be described by $\mathcal{V} = \{a, e, i, o, u, y\}$

 $^{^2}$ Do not abuse of this. Patterns are not always as clear as the writer \pm hinks or ∞

Describing a set: Roster method

- Roster method: list all the elements of the set between braces <u>Example</u> The set of vowels in the English alphabet can be described by $\mathcal{V} = \{a, e, i, o, u, y\}$
- Dots "…" may be used to describe a set without listing all of the members when the pattern is clear²
 Example The set of letters in the English alphabet can be described by \$\mathcal{L} = \{a, b, c, ..., z\}\$

 Example The set of natural numbers can be described by \$\overline{\mathbb{N}} = \{0, 1, 2, 3, ...\}\$

²Do not abuse of this. Patterns are not always as clear as the writer \pm hinks -9

Some important sets

- $\label{eq:states} \begin{array}{l} \mathbb{B} = \{ \text{true, false} \} : \text{ Boolean values} \\ \mathbb{N} = \{ 0, 1, 2, 3, \ldots \} : \text{ Natural numbers} \\ \mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} : \text{ Integers} \\ \mathbb{Z}^+ = \{ 1, 2, 3, \ldots \} : \text{ Positive integers} \\ \mathbb{R} : \text{ Real numbers} \\ \mathbb{R}^+ : \text{ Positive real numbers} \\ \mathbb{O} : \text{ Rational numbers} \end{array}$
- \mathbb{C} : Complex numbers

Describing a set: set builder notation

- Characterize the elements of the set by the property (or properties) they must satisfy to be members
- A predicate can be used

 $\begin{array}{ll} \hline \underline{\mathsf{Example}} & \mathcal{S} = \{x \mid x \text{ is a positive integer less than } 100\} \\ & \mathcal{S} = \{x \mid x \in \mathbb{Z}^+ \land x < 100\} \\ & \mathcal{S} = \{x \in \mathbb{Z}^+ \mid x < 100\} \\ \hline \underline{\mathsf{Example}} & \mathcal{P} = \{x \mid P(x)\} \text{ where } P(x) = \text{true iff } x \text{ is a prime number} \\ & \underline{\mathsf{Example}} & \mathbb{Q}^+ = \{q \mid \exists n, m \in \mathbb{Z}^+. \ q = n/m\} \end{array}$

Describing a set: interval notation

Used to describe subsets of sets upon which an order is defined, *e.g.* numbers

- closed interval: [a, b]
- open interval: (a, b)
- half-open intervals: [a, b) and (a, b]

Universal set and Empty set

- The universal set $\ensuremath{\mathcal{U}}$ is the set containing everything currently under consideration
 - $\,\triangleright\,$ Content depends on the context
 - Sometimes explicitly stated, sometimes implicit
- The empty set is the set with no elements. Symbolized by \emptyset or $\{\}$ and defined by

 $\forall x \in \mathcal{U}. \ x \notin \emptyset$

7 / 20

Truth Sets and Characteristic Predicates

We fix a domain $\ensuremath{\mathcal{U}}$

• Let P(x) be a predicate on \mathcal{U} . The truth set of P is the subset of \mathcal{U} where P is true, *i.e.* the set

 $\{x \in \mathcal{U} \mid P(x)\}$

 Let S ⊆ U be a subset of U. The characteristic predicate of S is the predicate P that is true exactly on S, *i.e.*

$$P(x) \leftrightarrow x \in \mathcal{S}$$

Some remarks

- Sets can be elements of other sets, Example $\mathcal{S} = \{\{1, 2, 3\}, a, \{u\}, \{b, c\}\}$
- The empty set is different from the set containing the

 $\emptyset \neq \{\emptyset\}$

Russell's Paradox

(After Bertrand Russell (18721970); Logician, mathematician and philosopher. Nobel Prize in Literature 1950)

 Naive set theory contains contradictions Let S be the set of all sets which are not members of themselves

$$\mathcal{S} = \{\mathcal{S}' \mid \mathcal{S}' \not\in \mathcal{S}'\}$$

"Is S a member of itself?", *i.e.* $S \in S$?

Russell's Paradox

(After Bertrand Russell (18721970); Logician, mathematician and philosopher. Nobel Prize in Literature 1950)

 Naive set theory contains contradictions Let S be the set of all sets which are not members of themselves

 $\mathcal{S} = \{ \mathcal{S}' \mid \mathcal{S}' \not\in \mathcal{S}' \}$

"Is \mathcal{S} a member of itself?", *i.e.* $\mathcal{S} \in \mathcal{S}$?

 Modern formulations (such as Zermelo-Fraenkel) avoid such obvious problems by stricter axioms about set construction³. However, it is impossible to prove in ZF that ZF is consistent (unless ZF is inconsistent)

³Well-definedness condition in definition of a set < □ > < □ > < ≥ > < ≥ > ≥ < ⊃ <

Set equality

Definition

Two sets A and B are equal, denoted A = B, iff they have the same elements

$$\forall A, B. \ (A = B \ \leftrightarrow \ \forall x. \ (x \in A \leftrightarrow x \in B))$$

Set equality

Definition

Two sets A and B are equal, denoted A = B, iff they have the same elements

$$\forall A, B. \ (A = B \iff \forall x. \ (x \in A \Leftrightarrow x \in B))$$

Example The order is not important

$$\{a, e, i, o, u, y\} = \{y, u, o, i, e, a\}$$

Set equality

Definition

Two sets A and B are equal, denoted A = B, iff they have the same elements

$$\forall A, B. \ (A = B \iff \forall x. \ (x \in A \Leftrightarrow x \in B))$$

Example The order is not important

$$\{a, e, i, o, u, y\} = \{y, u, o, i, e, a\}$$

Example Repetitions are not important

$$\{a, e, i, o, u, y\} = \{a, a, e, e, i, i, o, o, u, u, y, y\}$$

Definition

A set A is a subset of a set B (and B is a superset of A), denoted $A \subseteq B$, iff all elements of A are elements of B

 $\forall A, B. (A \subseteq B \leftrightarrow \forall x. (x \in A \rightarrow x \in B))$

Definition

A set A is a subset of a set B (and B is a superset of A), denoted $A \subseteq B$, iff all elements of A are elements of B

 $\forall A, B. (A \subseteq B \leftrightarrow \forall x. (x \in A \rightarrow x \in B))$

 $\underline{\mathsf{Example}} \{a, e, i\} \subseteq \{a, e, i, o, u, y\}$

Definition

A set A is a subset of a set B (and B is a superset of A), denoted $A \subseteq B$, iff all elements of A are elements of B

$$\forall A, B. (A \subseteq B \leftrightarrow \forall x. (x \in A \rightarrow x \in B))$$

 $\frac{\mathsf{Example}}{\mathsf{Example}} \{a, e, i\} \subseteq \{a, e, i, o, u, y\}$ Example $\forall S. \emptyset \subseteq S$

Definition

A set A is a subset of a set B (and B is a superset of A), denoted $A \subseteq B$, iff all elements of A are elements of B

$$\forall A, B. (A \subseteq B \leftrightarrow \forall x. (x \in A \rightarrow x \in B))$$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{Example} \ \{a, e, i\} \subseteq \{a, e, i, o, u, y\} \\ \hline \hline \mbox{Example} \ \forall \mathcal{S}. \ \emptyset \subseteq \mathcal{S} \\ \hline \hline \mbox{Example} \ \forall \mathcal{S}. \ \mathcal{S} \subseteq \mathcal{S} \end{array}$

Definition

A set A is a subset of a set B (and B is a superset of A), denoted $A \subseteq B$, iff all elements of A are elements of B

$$\forall A, B. (A \subseteq B \leftrightarrow \forall x. (x \in A \rightarrow x \in B))$$

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{Example} \ \{a, e, i\} \subseteq \{a, e, i, o, u, y\} \\ \hline \hline \mbox{Example} \ \forall \mathcal{S}. \ \emptyset \subseteq \mathcal{S} \\ \hline \hline \mbox{Example} \ \forall \mathcal{S}. \ \mathcal{S} \subseteq \mathcal{S} \end{array}$$

Definition

A is a proper subset of B iff $A \subseteq B$ and $A \neq B$. This is denoted by $A \subset B$. Equivalently, $\forall A, B. (A \subset B \leftrightarrow \forall x. (x \in A \rightarrow x \in B) \land \exists x. (x \in B \land x \notin A))$

Set cardinality

Definition

If there are exactly *n* distinct elements in a set S, where *n* is a non-negative integer, we say that S is finite. Otherwise it is infinite

Definition

The cardinality of a finite set $\mathcal S,$ denoted by $|\mathcal S|,$ is the number of (distinct) elements of $\mathcal S$

Powerset

Definition

The set of all subsets of a set S is called the power set of S. It is denoted by $\mathcal{P}(S)$ or 2^{S} . Formally

$$\mathcal{P}(\mathcal{S}) = \{\mathcal{S}' \mid \mathcal{S}' \subseteq \mathcal{S}\}$$

In particular,

•
$$\mathcal{S} \in \mathcal{P}(\mathcal{S})$$

• $\emptyset \in \mathcal{P}(\mathcal{S})$ $\Rightarrow \forall \mathcal{S}. \ \mathcal{P}(\mathcal{S}) \neq \emptyset$

 $\underbrace{ \begin{array}{l} \underline{\mathsf{Example}} \\ \overline{\mathsf{Example}} \end{array}}_{\mathcal{P}(\emptyset) = \{\emptyset\} \\ \mathcal{P}(\emptyset) = \{\emptyset\} \\ \mathcal{P}(\mathcal{P}(\emptyset)) = \{\emptyset, \{\emptyset\}\} \\ \mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \\ \end{array}}$

If $|\mathcal{S}| = n$ then $|\mathcal{P}(\mathcal{S})| = 2^n$. Proof by induction on *n*; see later

Tuples

- The ordered *n*-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection of *n* elements, where a_1 is the first, a_2 the second, *etc.*, and a_n the n^{th} (*i.e.* the last)
- Two n-tuples are equal iff their corresponding elements are equal:

$$egin{aligned} (a_1,a_2,...,a_n) &= (b_1,b_2,...,b_n) &\leftrightarrow \ a_1 &= b_1 \wedge a_2 &= b_2 \wedge \cdots \wedge a_n &= b_n \end{aligned}$$

2-tuples are called ordered pairs

Cartesian Product

Definition

The Cartesian product of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Definition

The Cartesian product of *n* sets A_1, A_2, \ldots, A_n , denoted by $A_1 \times A_2 \times \ldots \times A_n$, is the set of all tuples (a_1, a_2, \ldots, a_n) where $a_i \in A_i$ for $1 \le i \le n$

$$A_1 imes A_2 imes \ldots imes A_n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in A_i \text{ for } 1 \le i \le n\}$$

Example For $A = \{0, 1\}$, $B = \{1, 2\}$ and $C = \{0, 1, 2\}$

16/20

The powerset Boolean algebra

 $(\mathcal{P}(\mathcal{U}), \emptyset, \mathcal{U}, \cup, \cap, \overline{\cdot})$

$$A \cup B = \{x \in \mathcal{U} \mid x \in A \lor x \in B\}$$
$$A \cap B = \{x \in \mathcal{U} \mid x \in A \land x \in B\}$$
$$\overline{A} = \{x \in \mathcal{U} \mid \neg (x \in A)\}$$

• $|A \cup B| = |A| + |B| - |A \cap B|$ In particular, $|A \cup B| \le |A| + |B|$

• $|A \cap B| \le |A|$ $|A \cap B| \le |B|$

Set difference

Definition

The difference between sets A and B, denoted A - B is the set containing the elements of A that are not in B:

 $A-B = \{x \mid x \in A \land x \notin B\}$

<u>Example</u> $\{1, 2, 3\} - \{2, 4, 6\} = \{1, 3\}$

Set difference

Definition

The difference between sets A and B, denoted A - B is the set containing the elements of A that are not in B:

$$A - B = \{x \mid x \in A \land x \notin B\}$$

 $\underline{\mathsf{Example}} \ \{1,2,3\} - \{2,4,6\} = \{1,3\}$

Set Identities

(proofs on the board)

Identity laws: $A \cup \emptyset = A, \ A \cap \mathcal{U} = A$ Domination laws: $A \cup \mathcal{U} = \mathcal{U}, A \cap \emptyset = \emptyset$ Idempotent laws: $A \cup A = A$, $A \cap A = A$ Complementation law: $(\overline{A}) = A$ Complement laws: $A \cup \overline{A} = \mathcal{U}, \ A \cap \overline{A} = \emptyset$ Commutative laws: $A \cup B = B \cup A$, $A \cap B = B \cap A$ Associative laws: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$ Distributive laws: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Absorption laws: $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$ De Morgan's laws: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \ \overline{A \cap B} = \overline{A} \cup \overline{B}$

19/20

A theorem

Theorem

Let

$$\mathcal{F} \stackrel{\mathsf{def}}{=} \{ \mathcal{S} \subseteq \mathbb{R} \mid (0 \in \mathcal{S}) \land \forall x \in \mathbb{R}. \ (x \in \mathcal{S} \to (x+1) \in \mathcal{S}) \}$$

Then

- 1. $\mathbb{N} \in \mathcal{F}$
- 2. $\mathbb{N} \subseteq \bigcap \mathcal{F}^a$

^a $\cap \mathcal{F}$ denotes the intersection of all the sets in \mathcal{F} , *i.e.* $\cap \mathcal{F} \stackrel{\text{def}}{=} \bigcap_{\mathcal{S} \in \mathcal{F}} \mathcal{S}$

A theorem

Theorem

Let

$$\mathcal{F} \stackrel{\mathsf{def}}{=} \{ \mathcal{S} \subseteq \mathbb{R} \mid (0 \in \mathcal{S}) \land \forall x \in \mathbb{R}. \ (x \in \mathcal{S} \to (x+1) \in \mathcal{S}) \}$$

Then

- 1. $\mathbb{N} \in \mathcal{F}$
- 2. $\mathbb{N} \subseteq \bigcap \mathcal{F}^a$

 ${}^{a}\bigcap\mathcal{F}\text{ denotes the intersection of all the sets in }\mathcal{F}\text{, }i.e.\ \bigcap\mathcal{F}\overset{\text{def}}{=}\bigcap_{\mathcal{S}\in\mathcal{F}}\mathcal{S}$

Corollary

$$\bigcap \mathcal{F} = \mathbb{N}$$

 $(proofs on the board) _{20/20}$