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The principle of (ordinary) induction

Let P(n) be a predicate. If
1. P(0) is true, and

2. P(n) IMPLIES P(n+ 1) for all non-negative integers n
then

> P(m) is true for all non-negative integers m
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The principle of (ordinary) induction

Let P(n) be a predicate. If

1. P(0) is true, and

2. P(n) IMPLIES P(n+ 1) for all non-negative integers n
then

> P(m) is true for all non-negative integers m

1. The first item says that P(0) holds
2. The second item says that P(0) — P(1), and P(1) — P(2),
and P(2) — P(3), etc.

> Intuitively, there is a domino effect that eventually shows that
Vn e N. P(n)



Proof by induction

To prove by induction Yk € N. P(k) is true, follow these three
steps:

Base Case: Prove that P(0) is true

Inductive Hypothesis: Let k > 0. We assume that P(k) is true

Inductive Step: Prove that P(k 4+ 1) is true
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Proof by induction
To prove by induction Vk € N. P(k) is true, follow these three
steps:
Base Case: Prove that P(0) is true
Inductive Hypothesis: Let k > 0. We assume that P(k) is true
Inductive Step: Prove that P(k + 1) is true

Remark

Proofs by mathematical induction do not always start at the
integer 0. In such a case, the base case begins at a starting point
b € Z. In this case we prove the property only for integers > b
instead of for all n € N

17



Vke. SOk =K
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Vk € . fozl - k(k+1)

2

(By induction) Let P(k) be the predicate ”Ef-(zl i = Lk;l)”

Base Case: Y0 i=0= (OH) , thus P(0) is true

Inductive Hypothesis: Let kK > 0. We assume that P(k) is true,

k(k+1)
Ie. lel_ 2

Inductive Step: Y%l = [Zf-;l i} +(k+1)
= KEH) L (k+1)  (by LH)
_ k(KH1)42(k+1)
_ (k+1)(k42)
Thus P(k + 1) is true ’ O

u]
o)
|
i
it

D QR
/17



Vk € N. k3 — k is divisible by 3

o = = = = 9ac
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Vk € N. k3 — k is divisible by 3

(By induction) Let P(k) be the predicate “k> — k is divisible by 3"

Base Case: Since 0 = 3.0, it is the case that 3 divides
0 =03 -0, thus P(0) is true

Inductive Hypothesis: Let k > 0. We assume that P(k) is true,
i.e. k3 — k is divisible by 3

Inductive Step:

(k+1)3—(k+1) = (KB+3K>+3k+1)—(k+1)
= k*+3k*+2k
= (k> —k)+3k?+3k
= 3({+ k? + k) for some £ (by 1.H.)
Thus (k +1)3 — (k + 1) is divisible by 3. So we can conclude that
P(k + 1) is true O



Vk > 4. 2K < k!
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Yk > 4. 2k < k!

(By induction) Let P(k) be the predicate "2k < k!”
Base Case: 2* = 16 < 24 = 4!, thus P(4) is true

Inductive Hypothesis: Let k > 4. We assume that P(k) is true,
i.e 2K < k!

Inductive Step: 2kt1 = 2.2k
< 2.k (by I.H.)
< (k+1)-K (k>4
— (k+1)
Thus P(k + 1) is true O
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All horses are of the same color
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All horses are of the same color

(By induction) Let P(k) be the predicate “in any set of k horses,
all the horses are of the same color”

Base Case: In any set of just one horse, all horses obviously have
the same color, thus P(1) is true

Inductive Hypothesis: Let k > 1. We assume that P(k) is true,
i.e. “in any set of k horses, all the horses are of the same color”

Inductive Step: Let {Hi, Ha,..., Hky1} be a set of k + 1 horses.
Then, by I.H., all the horses in {Hy, Ha, ..., Hx} have the same
color. Similarly, by I.H., all the horses in {H, ..., Hx+1} have the
same color. Thus col(H1) = col(H>) = col(Hk+1). But this
implies that all the k + 1 horses are of the same color. Thus,

P(k + 1) is true. O
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All horses are of the same color

(By induction) Let P(k) be the predicate “in any set of k horses,
all the horses are of the same color”

Base Case: In any set of just one horse, all horses obviously have
the same color, thus P(1) is true

Inductive Hypothesis: Let k > 1. We assume that P(k) is true,
i.e. “in any set of k horses, all the horses are of the same color”

Inductive Step: Let {Hi, Ha,..., Hky1} be a set of k + 1 horses.
Then, by I.H., all the horses in {Hy, Ha, ..., Hx} have the same
color. Similarly, by I.H., all the horses in {H, ..., Hx+1} have the
same color. Thus col(H1) = col(H>) = col(Hk+1). But this
implies that all the k + 1 horses are of the same color. Thus,

P(k + 1) is true. O

IThe inductive step is not true for k=1!!!

17



The principle of strong induction

Let P(n) be a predicate. If
1. P(0) is true, and

2. P(0O)A---A P(n) IMPLIES P(n+ 1) for all non-negative
integers n

then
> P(m) is true for all non-negative integers m

e Intuitively, there is a domino effect that eventually shows that
Vn e N. P(n)

e Strong induction sometimes makes the proof of the inductive
step much easier since we assume a stronger statement



Every natural number k > 1 can be written as a
product of primes

(By induction) Let P(k) be the predicate “k can be written as a
product of primes”

Base Case: Since 2 is a prime number, P(2) is true

Inductive Hypothesis: Let k > 1. We assume that P(k) is true,
i.e. "k can be written as a product of primes”

Inductive Step: We distinguish two cases: (i) Case k + 1 is a
prime, then P(k + 1) is true; (ii) Case k + 1 is not a prime. Then
by definition of primality, there must exist 1 < n,m < k 4+ 1 such
that k 4+ 1 = n- m. But then we know by I.H. that n and m can be
written as a product of primes (since n,m < k). Therefore, k 4+ 1
can also be written as a product of primes. Thus, P(k + 1) is true
U
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Every natural number k > 1 can be written as a
product of primes

(By induction) Let P(k) be the predicate “k can be written as a
product of primes”

Base Case: Since 2 is a prime number, P(2) is true

Inductive Hypothesis: Let k > 1. We assume that P(k) is true,
i.e. "k can be written as a product of primes”

Inductive Step: We distinguish two cases: (i) Case k + 1 is a
prime, then P(k + 1) is true; (ii) Case k + 1 is not a prime. Then
by definition of primality, there must exist 1 < n,m < k 4+ 1 such
that k 4+ 1 = n- m. But then we know by I.H. that n and m can be
written as a product of primes (since n,m < k). Therefore, k 4+ 1
can also be written as a product of primes. Thus, P(k + 1) is true
U

— If we had only assumed P(k) to be true, then we could not
apply our I.LH. to n.and m D e e =
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Well-founded relations

Definition
A binary relation R C X x X is well-founded iff every non-empty
subset S C X has a minimal element w.r.t.

VSCX.(S#0—VseS. (s,m)€R)

o Intuitively, R does not contain any infinite descending chains
(However, it may still contain infinite increasing chains)

o Note that in the general definition above the relation R does
not need to be transitive.
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Examples of well-founded relations

(N, <) - The strict order on the natural numbers

Z+ where xRy is defined by x|y and x # y

2* - The set of all finite strings over a fixed alphabet ¥, with
xRy defined by the property that x is a proper substring of y

The set N x N of pairs of natural numbers, with
(n1, m)R(my, my) if and only if ny < my and np < my

The set of trees with R defined as "“is a proper subtree of”

Recursively-defined data structures with R defined as “is used
as a part in the construction of”
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Well-founded induction principle

e |dea of ordinary and strong induction: from properties of
“smaller” elements, we prove properties of “larger” elements

o |dea of well-founded relations: generalise induction to
well-founded sets

Let R be a well-founded relation on X, and let P(x) be a predicate
over elements in X

If Vx € X. ((Vy € X. yRx — P(y)) — P(x))

Then Vx € X. P(x)
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(Structural) Induction over binary trees

Trees are a fundamental data structure in computer science:
databases, graphics, compilers, editors, optimization, game-playing
Definition (Full binary tree)

Let A be a set of atoms. We recursively define full binary trees (7°)
as follows:

o Every atomisatree-Vace A aeT
o Consing any two trees gives a tree - Vt;, to € 7. (t1 et € T)

where n(t) is the number of
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(Structural) Induction over binary trees

Trees are a fundamental data structure in computer science:
databases, graphics, compilers, editors, optimization, game-playing
Definition (Full binary tree)

Let A be a set of atoms. We recursively define full binary trees (7°)
as follows:

o Every atomisatree-Vace A aeT
o Consing any two trees gives a tree - Vt;, to € 7. (t1 0t € T)
where n(t) is the number of

Full binary tree induction

For any predicate P(t),

If Vac A. P(a)

And Vt;,t € T. (P(t]_) A P(tg) — P(tl ° t2))
Then Vt € T. P(t)
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Functions on full binary trees

Definition (h(t))
The height h(t) of a full binary tree t € T is defined recursively as
follows:
e The height of a full binary tree t consisting of only a root r is
h(t)=0
e If t; and ty are full binary trees, then the full binary tree
t = t; ® t has height h(t) = 1+ max(h(t1), h(t2))

Definition (n(t))
The number of vertices n(t) of a full binary tree t is defined
recursively as follows:
o The number of vertices n(t) of a full binary tree t consisting
of only a root ris n(t) =1

e If t; and t, are full binary trees, then the full binary tree
t = t1 @ to has number of vertices n(t) =1+ n(t1) + n(t2)
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(Structural) Induction over binary trees

Theorem
If t is a full binary tree, then n(T) < 2h()+1 _1 J

Proof by structural induction

Base Case: The result holds for a full binary tree t consisting only
of a root by definition: n(t)=1<2!-1=1

Recursive step: We assume (t1)2h(1)+1 — 1 and also

(1.“2)2h(t2)+1 — 1 whenever t; and t, are full binary trees. Let
t=ti et

n(t) = 14 n(t1)+ n(t22) (by definition of n(t))
< 14 (2M)+E 1) 4 (k)L ) (by LLH.)
< 2. max(2h(t1)+17 2h(t2)+1) -1
- 2. 2max(h(t1),h(t2))+1 -1
= 2.2k 1 by definition of h(t)
2h(t)+1 -1



Example

Let S be the set defined as follows:
o Basis step: (0,0) € S
o Recursive Step: If (x,y) € S, then (x,y +1) € S,
(x+1,y+1)e S, and (x+2,y+1)e S
Prove that V(a,b) € S. a < 2b

Proof (by (strong) structural induction) We consider the
lexicographic oreder on pairs.

Base Case: 0<2-0

Recursive Case: Let (a,b) € S. We assume that for all

(a',b') e S, & <2.b'. By definition of S we know that if

(a, b) € S, then there exists (a’,b’) € S such that (a, b) is
obtained by applying one of the three possibilities to (a’, b'). We
distinguish these three possibilities.
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Example (continued)

Case (a,b) = (&', b’ +1). By inductive hypothesis, we know that
a’ < 2b, but then it must be that a/ <2b' +1 <2b +2=2b

Case (a,b) = (&' + 1, b’ + 1). By inductive hypothesis, we know
that &’ < 2b/, but then it must be that
a=a +1<2b+1<2b+2=2b

Case (a,b) = (&' + 2, b’ + 1). By inductive hypothesis, we know
that &’ < 2b/, but then it must be that a=a' +2 <2b' =2b
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