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The principle of (ordinary) induction

Let P(n) be a predicate. If

1. P(0) is true, and

2. P(n) IMPLIES P(n + 1) for all non-negative integers n

then

. P(m) is true for all non-negative integers m

1. The first item says that P(0) holds

2. The second item says that P(0)→ P(1), and P(1)→ P(2),
and P(2)→ P(3), etc.

. Intuitively, there is a domino effect that eventually shows that
∀n ∈ N. P(n)
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Proof by induction

To prove by induction ∀k ∈ N. P(k) is true, follow these three
steps:

Base Case: Prove that P(0) is true

Inductive Hypothesis: Let k ≥ 0. We assume that P(k) is true

Inductive Step: Prove that P(k + 1) is true

Remark

Proofs by mathematical induction do not always start at the
integer 0. In such a case, the base case begins at a starting point
b ∈ Z. In this case we prove the property only for integers ≥ b
instead of for all n ∈ N
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∀k ∈ .
∑k

i=1 i = k(k+1)
2

(By induction) Let P(k) be the predicate “
∑k

i=1 i = k(k+1)
2 ”

Base Case:
∑0

i=1 i = 0 = 0(0+1)
2 , thus P(0) is true

Inductive Hypothesis: Let k ≥ 0. We assume that P(k) is true,

i.e.
∑k

i=1 i = k(k+1)
2

Inductive Step:
∑k+1

i=1 i =
[∑k

i=1 i
]

+ (k + 1)

= k(k+1)
2 + (k + 1) (by I.H.)

= k(k+1)+2(k+1)
2

= (k+1)(k+2)
2

Thus P(k + 1) is true �
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∀k ∈ N. k3 − k is divisible by 3

(By induction) Let P(k) be the predicate “k3− k is divisible by 3”

Base Case: Since 0 = 3 · 0, it is the case that 3 divides
0 = 03 − 0, thus P(0) is true

Inductive Hypothesis: Let k ≥ 0. We assume that P(k) is true,
i.e. k3 − k is divisible by 3

Inductive Step:
(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1)− (k + 1)

= k3 + 3k2 + 2k
= (k3 − k) + 3k2 + 3k
= 3(` + k2 + k) for some ` (by I.H.)

Thus (k + 1)3 − (k + 1) is divisible by 3. So we can conclude that
P(k + 1) is true �
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∀k ≥ 4. 2k < k!

(By induction) Let P(k) be the predicate “2k < k!”

Base Case: 24 = 16 < 24 = 4!, thus P(4) is true

Inductive Hypothesis: Let k ≥ 4. We assume that P(k) is true,
i.e. 2k < k!

Inductive Step: 2k+1 = 2 · 2k
< 2 · k! (by I.H.)
< (k + 1) · k! (k ≥ 4)
= (k + 1)!

Thus P(k + 1) is true �
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All horses are of the same color

(By induction) Let P(k) be the predicate “in any set of k horses,
all the horses are of the same color”

Base Case: In any set of just one horse, all horses obviously have
the same color, thus P(1) is true

Inductive Hypothesis: Let k ≥ 1. We assume that P(k) is true,
i.e. “in any set of k horses, all the horses are of the same color”

Inductive Step: Let {H1,H2, . . . ,Hk+1} be a set of k + 1 horses.
Then, by I.H., all the horses in {H1,H2, . . . ,Hk} have the same
color. Similarly, by I.H., all the horses in {H2, . . . ,Hk+1} have the
same color. Thus col(H1) = col(H2) = col(Hk+1). But this
implies that all the k + 1 horses are of the same color. Thus,
P(k + 1) is true. �

!!!The inductive step is not true for k=1!!!
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The principle of strong induction

Let P(n) be a predicate. If

1. P(0) is true, and

2. P(0) ∧ · · · ∧ P(n) IMPLIES P(n + 1) for all non-negative
integers n

then

. P(m) is true for all non-negative integers m

• Intuitively, there is a domino effect that eventually shows that
∀n ∈ N. P(n)

• Strong induction sometimes makes the proof of the inductive
step much easier since we assume a stronger statement
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Every natural number k > 1 can be written as a
product of primes

(By induction) Let P(k) be the predicate “k can be written as a
product of primes”

Base Case: Since 2 is a prime number, P(2) is true

Inductive Hypothesis: Let k ≥ 1. We assume that P(k) is true,
i.e. “k can be written as a product of primes”

Inductive Step: We distinguish two cases: (i) Case k + 1 is a
prime, then P(k + 1) is true; (ii) Case k + 1 is not a prime. Then
by definition of primality, there must exist 1 < n,m < k + 1 such
that k + 1 = n ·m. But then we know by I.H. that n and m can be
written as a product of primes (since n,m ≤ k). Therefore, k + 1
can also be written as a product of primes. Thus, P(k + 1) is true
�

−→ If we had only assumed P(k) to be true, then we could not
apply our I.H. to n and m
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Well-founded relations

Definition

A binary relation R ⊆ X × X is well-founded iff every non-empty
subset S ⊆ X has a minimal element w.r.t.

∀S ⊆ X . (S 6= ∅ → ∀s ∈ S . (s,m) ∈ R)

• Intuitively, R does not contain any infinite descending chains
(However, it may still contain infinite increasing chains)

• Note that in the general definition above the relation R does
not need to be transitive.
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Examples of well-founded relations

• (N, <) - The strict order on the natural numbers

• Z+ where xRy is defined by x |y and x 6= y

• Σ∗ - The set of all finite strings over a fixed alphabet Σ, with
xRy defined by the property that x is a proper substring of y

• The set N× N of pairs of natural numbers, with
(n1, n2)R(m1,m2) if and only if n1 < m1 and n2 < m2

• The set of trees with R defined as “is a proper subtree of”

• Recursively-defined data structures with R defined as “is used
as a part in the construction of”
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Well-founded induction principle

• Idea of ordinary and strong induction: from properties of
“smaller” elements, we prove properties of “larger” elements

• Idea of well-founded relations: generalise induction to
well-founded sets

Let R be a well-founded relation on X , and let P(x) be a predicate
over elements in X
If ∀x ∈ X . ((∀y ∈ X . yRx → P(y))→ P(x))
Then ∀x ∈ X . P(x)
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(Structural) Induction over binary trees

Trees are a fundamental data structure in computer science:
databases, graphics, compilers, editors, optimization, game-playing

Definition (Full binary tree)

Let A be a set of atoms. We recursively define full binary trees (T )
as follows:

• Every atom is a tree - ∀a ∈ A. a ∈ T
• Consing any two trees gives a tree - ∀t1, t2 ∈ T . (t1 • t2 ∈ T )

where n(t) is the number of

Full binary tree induction

For any predicate P(t),
If ∀a ∈ A. P(a)
And ∀t1, t2 ∈ T . (P(t1) ∧ P(t2)→ P(t1 • t2))
Then ∀t ∈ T . P(t)
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Functions on full binary trees

Definition (h(t))

The height h(t) of a full binary tree t ∈ T is defined recursively as
follows:

• The height of a full binary tree t consisting of only a root r is
h(t) = 0

• If t1 and t2 are full binary trees, then the full binary tree
t = t1 • t2 has height h(t) = 1 + max(h(t1), h(t2))

Definition (n(t))

The number of vertices n(t) of a full binary tree t is defined
recursively as follows:

• The number of vertices n(t) of a full binary tree t consisting
of only a root r is n(t) = 1

• If t1 and t2 are full binary trees, then the full binary tree
t = t1 • t2 has number of vertices n(t) = 1 + n(t1) + n(t2)
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(Structural) Induction over binary trees

Theorem

If t is a full binary tree, then n(T ) ≤ 2h(t)+1 − 1

Proof by structural induction
Base Case: The result holds for a full binary tree t consisting only
of a root by definition: n(t) = 1 ≤ 21 − 1 = 1
Recursive step: We assume (t1)2h(t1)+1 − 1 and also
(t2)2h(t2)+1 − 1 whenever t1 and t2 are full binary trees. Let
t = t1 • t2
n(t) = 1 + n(t1) + n(t22) (by definition of n(t))

≤ 1 + (2h(t1)+1 − 1) + (2h(t2)+1 − 1) (by I.H.)

≤ 2 ·max(2h(t1)+1, 2h(t2)+1)− 1

= 2 · 2max(h(t1),h(t2))+1 − 1

= 2 · 2h(t) − 1 by definition of h(t)

= 2h(t)+1 − 1
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Example

Let S be the set defined as follows:

• Basis step: (0, 0) ∈ S

• Recursive Step: If (x , y) ∈ S , then (x , y + 1) ∈ S ,
(x + 1, y + 1) ∈ S , and (x + 2, y + 1) ∈ S

Prove that ∀(a, b) ∈ S . a ≤ 2b

Proof (by (strong) structural induction) We consider the
lexicographic oreder on pairs.
Base Case: 0 ≤ 2 · 0
Recursive Case: Let (a, b) ∈ S . We assume that for all
(a′, b′) ∈ S , a′ ≤ 2 · b′. By definition of S we know that if
(a, b) ∈ S , then there exists (a′, b′) ∈ S such that (a, b) is
obtained by applying one of the three possibilities to (a′, b′). We
distinguish these three possibilities.
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Example (continued)

Case (a, b) = (a′, b′ + 1). By inductive hypothesis, we know that
a′ ≤ 2b′, but then it must be that a′ ≤ 2b′ + 1 < 2b′ + 2 = 2b

Case (a, b) = (a′ + 1, b′ + 1). By inductive hypothesis, we know
that a′ ≤ 2b′, but then it must be that
a = a′ + 1 ≤ 2b′ + 1 < 2b′ + 2 = 2b

Case (a, b) = (a′ + 2, b′ + 1). By inductive hypothesis, we know
that a′ ≤ 2b′, but then it must be that a = a′ + 2 ≤ 2b′ = 2b
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