
Discrete Mathematics, Chapter 3:
Algorithms

Richard Mayr

University of Edinburgh, UK

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 1 / 28

Outline

1 Properties of Algorithms

2 The Growth of Functions

3 Complexity of Algorithms

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 2 / 28

Algorithms (Abu Ja ’far Mohammed Ibin Musa Al-Khowarizmi,

780-850)

Definition
An algorithm is a finite set of precise instructions for performing a
computation or for solving a problem.

Example: Describe an algorithm for finding the maximum value in a
finite sequence of integers.
Description of algorithms in pseudocode:

Intermediate step between English prose and formal coding in a
programming language.
Focus on the fundamental operation of the program, instead of
peculiarities of a given programming language.
Analyze the time required to solve a problem using an algorithm,
independent of the actual programming language.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 3 / 28

Properties of Algorithms

Input: An algorithm has input values from a specified set.
Output: From the input values, the algorithm produces the output

values from a specified set. The output values are the
solution.

Correctness: An algorithm should produce the correct output values
for each set of input values.

Finiteness: An algorithm should produce the output after a finite
number of steps for any input.

Effectiveness: It must be possible to perform each step of the
algorithm correctly and in a finite amount of time.

Generality: The algorithm should work for all problems of the desired
form.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 4 / 28

Example: Linear Search
Prose: Locate an item in a list by examining the sequence of list
elements one at a time, starting at the beginning.
More formal prose: Find item x in the list [a1,a2, . . . ,an].

First compare x with a1. If they are equal, return the position 1.
If not, try a2. If x = a2, return the position 2.
Keep going, and if no match is found when the entire list is
scanned, return 0.

Pseudocode:
Algorithm 1: Linear Search
Input: x : integer , [a1, . . . ,an] : list of distinct integers
Output: Index i s.t. x = ai or 0 if x is not in the list.
i := 1;
while i ≤ n and x 6= ai do

i := i + 1;

if i ≤ n then result := i else result := 0;
return result ;

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 5 / 28

Binary Search

Prose description:
Assume the input is a list of items in increasing order, and the
target element to be found.
The algorithm begins by comparing the target with the middle
element.

I If the middle element is strictly lower than the target, then the
search proceeds with the upper half of the list.

I Otherwise, the search proceeds with the lower half of the list
(including the middle).

Repeat this process until we have a list of size 1.
I If target is equal to the single element in the list, then the position is

returned.
I Otherwise, 0 is returned to indicate that the element was not found.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 6 / 28

Binary Search

Pseudocode:
Algorithm 2: Binary Search
Input: x : integer , [a1, . . . ,an] : strictly increasing list of integers
Output: Index i s.t. x = ai or 0 if x is not in the list.
i := 1; // i is the left endpoint of the interval
j := n; // j is the right endpoint of the interval
while i < j do

m := b(i + j)/2c;
if x > am then i := m + 1 else j := m;

if x = ai then result := i else result := 0;
return result ;

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 7 / 28

Example: Binary Search
Find target 19 in the list: 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

1 The list has 16 elements, so the midpoint is 8. The value in the 8th
position is 10. As 19>10, search is restricted to positions 9-16.
1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

2 The midpoint of the list (positions 9 through 16) is now the 12th
position with a value of 16. Since 19 > 16, further search is
restricted to the 13th position and above.
1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

3 The midpoint of the current list is now the 14th position with a
value of 19. Since 19 6> 19, further search is restricted to the
portion from the 13th through the 14th positions.
1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

4 The midpoint of the current list is now the 13th position with a
value of 18. Since 19 > 18, search is restricted to position 14.
1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

5 Now the list has a single element and the loop ends.
Since 19 = 19, the location 14 is returned.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 8 / 28

Greedy Algorithms

Optimization problems minimize or maximize some parameter
over all possible inputs.
Examples of optimization problems:

I Finding a route between two cities with the smallest total mileage.
I Determining how to encode messages using the fewest possible

bits.
I Finding the fiber links between network nodes using the least

amount of fiber.

Optimization problems can often be solved using a greedy
algorithm, which makes the “best” (by a local criterion) choice at
each step. This does not necessarily produce an optimal solution
to the overall problem, but in many instances, it does.
After specifying what the “best choice” at each step is, we try to
prove that this approach always produces an optimal solution, or
find a counterexample to show that it does not.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 9 / 28

Example: Greedy Scheduling
We have a group of proposed talks with start and end times.
Construct a greedy algorithm to schedule as many as possible in a
lecture hall, under the following assumptions:

When a talk starts, it continues till the end. (Indivisible).
No two talks can occur at the same time. (Mutually exclusive.)
A talk can begin at the same time that another ends.
Once we have selected some of the talks, we cannot add a talk
which is incompatible with those already selected because it
overlaps at least one of these previously selected talks.
How should we make the “best choice” at each step of the
algorithm? That is, which talk do we pick?

I The talk that starts earliest among those compatible with already
chosen talks?

I The talk that is shortest among those already compatible?
I The talk that ends earliest among those compatible with already

chosen talks?

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 10 / 28

Greedy Scheduling

Picking the shortest talk doesn’t work.
But picking the one that ends soonest does work. The algorithm is
specified on the next page.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 11 / 28

A Greedy Scheduling Algorithm
At each step, choose the talks with the earliest ending time among the
talks compatible with those selected.

Algorithm 3: Greedy Scheduling by End Time
Input: s1, s2, . . . , sn start times and e1,e2, . . . ,en end times
Output: An optimal set S ⊆ {1, . . . ,n} of talks to be scheduled.
Sort talks by end time and reorder so that e1 ≤ e2 ≤ · · · ≤ en
S := ∅;
for j := 1 to n do

if Talk j is compatible with S then
S := S ∪ {j}

return S;

Note: Scheduling problems appear in many applications. Many of
them (unlike this simple one) are NP-complete and do not allow
efficient greedy algorithms.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 12 / 28

The Growth of Functions

Given functions f : N→ R or f : R→ R.
Analyzing how fast a function grows.

Comparing two functions.
Comparing the efficiently of different algorithms that solve the
same problem.
Applications in number theory (Chapter 4) and combinatorics
(Chapters 6 and 8).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 13 / 28

Big-O Notation

Definition
Let f ,g : R→ R. We say that f is O(g) if there are constants C and k
such that

∀x > k . |f (x)| ≤ C|g(x)|

This is read as “f is big-O of g” or “g asymptotically dominates f ”.
The constants C and k are called witnesses to the relationship
between f and g. Only one pair of witnesses is needed. (One pair
implies many pairs, since one can always make k or C larger.)
Common abuses of notation: Often one finds this written as
“f (x) is big-O of g(x)” or “f (x) = O(g(x))”.
This is not strictly true, since big-O refers to functions and not their
values, and the equality does not hold.
Strictly speaking O(g) is the class of all functions f that satisfy the
condition above. So it would be formally correct to write f ∈ O(g).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 14 / 28

Illustration of Big-O Notation
f (x) = x2 + 2x + 1, g(x) = x2.
f is O(g) witness k = 1 and C = 4.
Abusing notation, this is often written as f (x) = x2 + 2x + 1 is O(x2).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 15 / 28

Properties of Big-O Notation

If f is O(g) and g is O(f) then one says that f and g are of the
same order.
If f is O(g) and h(x) ≥ g(x) for all positive real numbers x then f
is O(h).
The O-notation describes upper bounds on how fast functions
grow. E.g., f (x) = x2 + 3x is O(x2) but also O(x3), etc.
Often one looks for a simple function g that is as small as
possible such that still f is O(g).
(The word ‘simple’ is important, since trivially f is O(f).)

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 16 / 28

Example

Bounds on functions. Prove that
f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0 is O(xn).
1 + 2 + · · ·+ n is O(n2).
n! = 1× 2× · · · × n is O(nn).
log(n!) is O(n log(n)).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 17 / 28

Growth of Common Functions

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 18 / 28

Useful Big-O Estimates

If d > c > 1, then nc is O(nd), but nd is not O(nc).
If b > 1 and c and d are positive, then (logb n)c is O(nd), but nd is
not O((logb n)c).
If b > 1 and d is positive, then nd is O(bn), but bn is not O(nd).
If c > b > 1, then bn is O(cn), but cn is not O(bn).
If f1(x) is O(g1(x)) and f2(x) is O(g2(x)) then (f1 + f2)(x) is
O(max(|g1(x)|, |g2(x)|)).
If f1 is O(g1) and f2 is O(g2) then (f1 ◦ f2) is O(g1 ◦ g2).

Note: These estimates are very important for analyzing algorithms.
Suppose that g(n) = 5n2 + 7n− 3 and f is a very complex function that
you cannot determine exactly, but you know that f is O(n3).
Then you can still derive that n · f (n) is O(n4) and g(f (n)) is O(n6).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 19 / 28

Big-Omega Notation

Definition
Let f ,g : R→ R. We say that f is Ω(g) if there are constants C and k
such that

∀x > k . |f (x)| ≥ C|g(x)|

This is read as “f is big-Omega of g”.
The constants C and k are called witnesses to the relationship
between f and g.
Big-O gives an upper bound on the growth of a function, while
Big-Omega gives a lower bound. Big-Omega tells us that a
function grows at least as fast as another.
Similar abuse of notation as for big-O.
f is Ω(g) if and only if g is O(f).
(Prove this by using the definitions of O and Ω.)

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 20 / 28

Big-Theta Notation

Definition
Let f ,g : R→ R. We say that f is Θ(g) if f is O(g) and f is Ω(g).

We say that “f is big-Theta of g” and also that “f is of order g” and
also that “f and g are of the same order”.
f is Θ(g) if and only if there exists constants C1, C2 and k such
that C1g(x) < f (x) < C2g(x) if x > k . This follows from the
definitions of big-O and big-Omega.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 21 / 28

Example

Show that the sum 1 + 2 + · · ·+ n of the first n positive integers is
Θ(n2).
Solution: Let f (n) = 1 + 2 + · · ·+ n.
We have previously shown that f (n) is O(n2).
To show that f (n) is Ω(n2), we need a positive constant C such that
f (n) > Cn2 for sufficiently large n.
Summing only the terms greater than n/2 we obtain the inequality

1 + 2 + · · ·+ n ≥ dn/2e+ (dn/2e+ 1) + · · ·+ n
≥ dn/2e+ dn/2e+ · · ·+ dn/2e
= (n − dn/2e+ 1)dn/2e
≥ (n/2)(n/2) = n2/4

Taking C = 1/4, f (n) > Cn2 for all positive integers n. Hence, f (n) is
Ω(n2), and we can conclude that f (n) is Θ(n2).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 22 / 28

Complexity of Algorithms
Given an algorithm, how efficient is this algorithm for solving a
problem given input of a particular size?

I How much time does this algorithm use to solve a problem?
I How much computer memory does this algorithm use to solve a

problem?

We measure time complexity in terms of the number of operations
an algorithm uses and use big-O and big-Theta notation to
estimate the time complexity.
Compare the efficiency of different algorithms for the same
problem.
We focus on the worst-case time complexity of an algorithm.
Derive an upper bound on the number of operations an algorithm
uses to solve a problem with input of a particular size.
(As opposed to the average-case complexity.)
Here: Ignore implementation details and hardware properties.
−→ See courses on algorithms and complexity.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 23 / 28

Worst-Case Complexity of Linear Search
Algorithm 4: Linear Search
Input: x : integer , [a1, . . . ,an] : list of distinct integers
Output: Index i s.t. x = ai or 0 if x is not in the list.
i := 1;
while i ≤ n and x 6= ai do

i := i + 1;

if i ≤ n then result := i else result := 0;
return result ;

Count the number of comparisons.
At each step two comparisons are made; i ≤ n and x 6= ai .
To end the loop, one comparison i ≤ n is made.
After the loop, one more i ≤ n comparison is made.

If x = ai , 2i + 1 comparisons are used. If x is not on the list, 2n + 1
comparisons are made and then an additional comparison is used to
exit the loop. So, in the worst case 2n + 2 comparisons are made.
Hence, the complexity is Θ(n).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 24 / 28

Average-Case Complexity of Linear Search

For many problems, determining the average-case complexity is very
difficult.
(And often not very useful, since the real distribution of input cases
does not match the assumptions.)
However, for linear search the average-case is easy.
Assume the element is in the list and that the possible positions are
equally likely. By the argument on the previous slide, if x = ai , the
number of comparisons is 2i + 1. Hence, the average-case complexity
of linear search is

1
n

n∑
i=1

2i + 1 = n + 2

Which is Θ(n).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 25 / 28

Worst-Case Complexity of Binary Search
Algorithm 5: Binary Search
Input: x : integer , [a1, . . . ,an] : strictly increasing list of integers
Output: Index i s.t. x = ai or 0 if x is not in the list.
i := 1; // i is the left endpoint of the interval
j := n; // j is the right endpoint of the interval
while i < j do

m := b(i + j)/2c;
if x > am then i := m + 1 else j := m;

if x = ai then result := i else result := 0;
return result ;

Assume (for simplicity) n = 2k elements. Note that k = log n.
Two comparisons are made at each stage; i < j , and x > am.
At the first iteration the size of the list is 2k and after the first iteration it is
2k−1. Then 2k−2 and so on until the size of the list is 21 = 2.
At the last step, a comparison tells us that the size of the list is the size is
20 = 1 and the element is compared with the single remaining element.
Hence, at most 2k + 2 = 2 log n + 2 comparisons are made. Θ(log n).

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 26 / 28

Terminology for the Complexity of Algorithms

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 27 / 28

Further topics

See courses on algorithms and complexity for
Space vs. time complexity
Intractable problems
Complexity classes: E.g., P, NP, PSPACE, EXPTIME, EXPSPACE,
etc.
Undecidable problems and the limits of algorithms.

Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 28 / 28

	Properties of Algorithms
	The Growth of Functions
	Complexity of Algorithms

