
DMMR Tutorial 9

Discrete Probability

1. Suppose a biased coin, which lands heads with probability 1/3 (and tails with probability 2/3)
each time it is flipped, is flipped 10 times.

What is the conditional probability that the number of times the coin lands heads is exactly 3,
given that (i.e., conditioned on the event that) the number of times it lands heads is divisible by 3?
(Give an expression for this probability. You do not need to compute its exact value.)

Solution:
We know that the number of time the coin lands heads is described by the binomial distribution,
with parameters p = 1/3 and n = 10.

The probability that the coin lands head exactly k times is
(
n
k

)
pk(1− p)n−k.

Recall that the conditional probability of event A conditioned on event B is defined by P (A |
B) = P (A ∩ B)/P (B), assuming that P (B) > 0. Let A be the event that the coin comes up
heads exactly 3 times. Let B be the event that the number of times the coin comes up heads is
divisible by 3. Note that since A ⊆ B, so we have A ∩ B = A. thus P (A | B) = P (A)/P (B).
We thus need to compute the probabilities P (A) and P (B).

The probability P (A) that the coin comes up heads exactly 3 times is (by the binomial distribu-
tion), given by: (

10

3

)
(1/3)3(2/3)7

The probability P (B) that the number of times the coin lands heads is divisible by 3 is:

3∑
i=0

(
10

3 · i

)
(1/3)3·i(2/3)10−(3·i)

Thus, the conditional probability P (A|B) = P (A)/P (B) is given by:(
10
3

)
(1/3)3(2/3)7∑3

i=0

(
10
3·i
)
(1/3)3·i(2/3)10−(3·i)

�

2. Suppose that a fair coin is flipped three times consecutively.

Let E1 and E2 denote the events that “the first flip comes up heads”, and “the second flip comes
up heads”, respectively.

Let B denote the event that exactly one of the first and second coin tosses comes up heads.

Prove that E1, E2, and B are pairwise-independent events, but that they are NOT mutually inde-
pendent events.
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(Thus, observe that pairwise independence of a collection of events does not imply mutual inde-
pendence.)

Solution:
We represent each outcome of flipping the coin three times as a triple where, for example, (h, t, t)
represents the outcome in which the first flip comes up heads, and the other two tails. There are
thus 8 such possible outcomes, and we know that all 8 outcomes are equally likely (each has
probability 1

8 ).

First, let’s establish the fact that E1 is independent of E2. We need to show that P (E1 ∩ E2) =
P (E1)P (E2). We obviously know that P (Ei) =

1
2 , for i ∈ {1, 2}. We can also alternatively see

this from the fact that the event E1 = {(h, t, t), (h, t, h), (h, h, t), (h, h, h)} contains exactly 4
outcomes, and thus P (E1) =

4
8 = 1

2 . Similarly, E2 = {(t, h, t), (t, h, h), (h, h, t), (h, h, h)}, and
thus P (E2) =

1
2 . Finally note that E1∩E2 = {(h, h, t), (h, h, h)}, and thus P (E1∩E2) =

2
8 = 1

4 .
Thus P (E1 ∩ E2) =

1
4 = P (E1)P (E2).

We next show that B is pairwise-independent of both E1 and E2. We need to show that P (B ∩
Ei) = P (B)P (Ei). First, let us calculate P (B). There are 4 outcomes in which exactly one
of the first two flips comes up heads: B = {(h, t, h), (h, t, t), (t, h, h), (t, h, t)}. Thus, P (B) =
4/8 = 1/2. Moreover, B ∩ E1 = {(h, t, h), (h, t, t)}, and B ∩ E2 = {(t, h, h), (t, h, t)} thus
P (B ∩ E1) = P (B ∩ E2) =

2
8 = 1

4 = P (B)P (E1). Thus B and E1 are (pairwise) independent,
and also B and E2 are (pairwise) independent.

Now observe that E1∩E2∩B = ∅, because it can not be the case that both of the first two coin flips
came up heads and exactly one of the first two coin flips came up heads. Thus P (E1∩E2∩B) =
0 6= (1/2)3 = P (E1)P (E2)P (B). Thus, the three events are not mutually independent. �

3. Suppose that a pharmaceutical company has developed a new non-invasive test for a type of cancer.
Their studies show that this new test has the following properties.

(a) If the test is performed on a (random) person who has this type of cancer, then there is an
88% chance that the test result will be positive.

(b) If, on the other hand, the test is performed on a (random) person who does not have this
cancer, then there is a 9% chance that the test result will be positive.

(c) Approximately 1 in 1000 persons in the entire population have this type of cancer.

Suppose that this new test is performed on a (random) person in the population. What is the
probability that the person actually has this cancer, given that their test result was positive?

Solution:
We want to compute P (C|T ), where C represents the event that the person has cancer, and T
represents the event that the test is positive. We use C to denote the event that the person does not
have cancer.

Bayes’ theorem tells us that P (C|T ) = P (T |C)P (C)/P (T ), and moreover,

P (T ) = P (T ∩ C) + P (T ∩ C)

= P (T |C)P (C) + P (T |C)P (C)
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Therefore

P (C|T ) = P (T |C)P (C)

P (T )

=
P (T |C)P (C)

P (T |C)P (C) + P (T |C)P (C)

=
(0.88)(0.001)

(0.88)(0.001) + (0.09)(0.999)
= 0.00969

Thus, a random person who tests positive for this test is still very unlikely to have this type of
cancer: namely they only have a chance of less than 1 in 100 of having this cancer.
Still, this is nearly 10 times more likely than the probability (1/1000) that a random person in the
general population has this cancer. So the test does tell us something.

However, if the follow-up tests are painful and cause substantial long term discomfort, it is tricky
to justify causing so much discomfort to so many people in the population who do not have the
cancer, in order to catch early on the rarer cases of those who do have the cancer. Furthermore,
obviously in the real world, the costs of such tests also have to be taken into account.

Although this example is very simplistic, it already indicates some of the dilemmas and trade-offs
faced regularly by policy makers in health care. �

4. Let us suppose that the number of crisp packets that the Walkers Crisp Company produces in a
given day is a random variable. Suppose that the average number of crisp packets that Walkers
produces in a day is 100,000.

Prove that the probability that Walkers produces more than 1.5 million packets in a given day is at
most 1/15.

Solution:
This is a straightforward application of Markov’s inequality, which tells us that for any non-
negative random variable X , and any a > 0, P (X ≥ a) ≤ E(X)

a . Assuming E(X) > 0, this says
that for any k > 0, P (X ≥ k · E(X)) ≤ 1

k .

In our case, if X is the random variable which gives the number of crisp packets produced by
Walkers in a given day, then E(X) = 100000, and P (X ≥ 1.5 ·106) = P (X ≥ 15 ·E(X)) ≤ 1

15 .
�

5. (This question is harder than the others. I offer some hints below.)

Suppose you are a big fan of Star Wars.

Suppose that Kellogg’s Corn Flakes has made a deal with Disney (the company that owns the
rights to Star Wars), allowing Kellogg’s to place inside each Corn Flakes cereal box a small replica
action figure for one of 25 Star Wars characters.

Suppose each of the 25 Star Wars action figures is equally likely to be placed in each Corn Flakes
cereal box. (The box cover does not indicate which action figure is inside the cereal box.)

Suppose your goal is to collect all n = 25 Star Wars action figures.

What is the expected number of cereal boxes that you would have to buy in order to do this?

Solve this for general n, and then plug in n = 25 to get the specific solution.

(Hints: Consider the random variable X , which denotes the total number of boxes you bought
until you obtained all n action figures. Consider also the random variables, Xi, i = 1, . . . , n,
denoting the number of boxes you bought after you had already collected i − 1 different action

3



figures, up to and including the box which gave you the new i’th different action figure. Note that
X =

∑n
i=1Xi. Note also that Xi is a geometrically distributed random variable. )

Solution:
Note that Xi is a geometrically distributed random variable, with parameter pi = 1− i−1

n = n−i+1
n .

This is because, after having seen i−1 action figures, the probability that we will next see an action
figure different from any of those is pi.

Thus, since Xi is geometrically distributed, we have E(Xi) =
1
pi

= n
n−i+1 .

Using linearity of expectation, we have:

E(X) = E(

n∑
i=1

Xi)

=

n∑
i=1

E(Xi)

=

n∑
i=1

n

n− i+ 1

= n

n∑
i=1

1

n− i+ 1

= n

n∑
i=1

1

i

Using the fact that lnn ≤
∑n

i=1
1
i ≤ (lnn) + 1, we get that n lnn < E(X) ≤ n lnn + n. So,

E(X) = n lnn+O(n).

In particular, if there are n = 25 action figures, then the expected number of cereal boxes you
would need to buy to collect all of them t is 25

∑25
i=1

1
i , which is between 25 · ln 25 = 80.47

and 80.47 + 25 = 105.47. A tighter approximation of the hormonic series
∑n

i=1
1
i yields that∑25

i=1
1
i ≈ 3.8159 and thus that E(X) is roughly 95.4, when n = 25.

So, the expected number of cereal boxes you would have to buy to collect all 25 Star Wars action
figures is roughly 95.4. �
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